These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Influence of physiological status on residues of lipophilic xenobiotics in livestock. MacLachlan DJ. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 May; 26(5):692-712. PubMed ID: 19680941 [Abstract] [Full Text] [Related]
23. [Maximum residue levels (MRL's) of veterinary medicines in relation to food safety. MRL's really do matter--the Benzaprocpen case]. Vaarkamp H. Tijdschr Diergeneeskd; 2002 Jan 01; 127(1):2-6. PubMed ID: 11795030 [Abstract] [Full Text] [Related]
24. Integration of Food Animal Residue Avoidance Databank (FARAD) empirical methods for drug withdrawal interval determination with a mechanistic population-based interactive physiologically based pharmacokinetic (iPBPK) modeling platform: example for flunixin meglumine administration. Li M, Cheng YH, Chittenden JT, Baynes RE, Tell LA, Davis JL, Vickroy TW, Riviere JE, Lin Z. Arch Toxicol; 2019 Jul 01; 93(7):1865-1880. PubMed ID: 31025081 [Abstract] [Full Text] [Related]
25. A physiologically based pharmacokinetic model for endosulfan in the male Sprague-Dawley rats. Chan MP, Morisawa S, Nakayama A, Kawamoto Y, Sugimoto M, Yoneda M. Environ Toxicol; 2006 Oct 01; 21(5):464-78. PubMed ID: 16944508 [Abstract] [Full Text] [Related]
26. Residues of deoxynivalenol (DON) in pig tissue after feeding mash or pellet diets containing low concentrations. Döll S, Dänicke S, Valenta H. Mol Nutr Food Res; 2008 Jun 01; 52(6):727-34. PubMed ID: 18465777 [Abstract] [Full Text] [Related]
27. Melamine in prenatal and postnatal organs in rats. Chu CY, Chu KO, Ho CS, Kwok SS, Chan HM, Fung KP, Wang CC. Reprod Toxicol; 2013 Jan 01; 35():40-7. PubMed ID: 22732147 [Abstract] [Full Text] [Related]
28. Use of a Monte Carlo analysis within a physiologically based pharmacokinetic model to predict doxycycline residue withdrawal time in edible tissues in swine. Yang F, Liu HW, Li M, Ding HZ, Huang XH, Zeng ZL. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012 Jan 01; 29(1):73-84. PubMed ID: 22059524 [Abstract] [Full Text] [Related]
29. Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC. Lin M, He L, Awika J, Yang L, Ledoux DR, Li H, Mustapha A. J Food Sci; 2008 Oct 01; 73(8):T129-34. PubMed ID: 19019134 [Abstract] [Full Text] [Related]
30. A physiologically based pharmacokinetic model for quinoxaline-2-carboxylic acid in rats, extrapolation to pigs. Yang X, Zhou YF, Yu Y, Zhao DH, Shi W, Fang BH, Liu YH. J Vet Pharmacol Ther; 2015 Feb 01; 38(1):55-64. PubMed ID: 25378053 [Abstract] [Full Text] [Related]
31. Preparation of [13C3]-melamine and [13C3]-cyanuric acid and their application to the analysis of melamine and cyanuric acid in meat and pet food using liquid chromatography-tandem mass spectrometry. Varelis P, Jeskelis R. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Oct 01; 25(10):1208-15. PubMed ID: 18608503 [Abstract] [Full Text] [Related]
32. Novel cyromazine imprinted polymer applied to the solid-phase extraction of melamine from feed and milk samples. He L, Su Y, Zheng Y, Huang X, Wu L, Liu Y, Zeng Z, Chen Z. J Chromatogr A; 2009 Aug 21; 1216(34):6196-203. PubMed ID: 19631323 [Abstract] [Full Text] [Related]
33. Clinicopathologic, histologic, and toxicologic findings in 70 cats inadvertently exposed to pet food contaminated with melamine and cyanuric acid. Cianciolo RE, Bischoff K, Ebel JG, Van Winkle TJ, Goldstein RE, Serfilippi LM. J Am Vet Med Assoc; 2008 Sep 01; 233(5):729-37. PubMed ID: 18764706 [Abstract] [Full Text] [Related]
35. Physiologically based pharmacokinetic model for quinocetone in pigs and extrapolation to mequindox. Zhu X, Huang L, Xu Y, Xie S, Pan Y, Chen D, Liu Z, Yuan Z. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Feb 01; 34(2):192-210. PubMed ID: 28001497 [Abstract] [Full Text] [Related]
39. Critical review on the withdrawal period calculation for injection site residues. Sanquer A, Wackowiez G, Havrileck B. J Vet Pharmacol Ther; 2006 Oct 01; 29(5):355-64. PubMed ID: 16958779 [Abstract] [Full Text] [Related]
40. An Interactive Generic Physiologically Based Pharmacokinetic (igPBPK) Modeling Platform to Predict Drug Withdrawal Intervals in Cattle and Swine: A Case Study on Flunixin, Florfenicol, and Penicillin G. Chou WC, Tell LA, Baynes RE, Davis JL, Maunsell FP, Riviere JE, Lin Z. Toxicol Sci; 2022 Jul 28; 188(2):180-197. PubMed ID: 35642931 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]