These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


202 related items for PubMed ID: 18581212

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process.
    Salmaso S, Elvassore N, Bertucco A, Caliceti P.
    J Pharm Sci; 2009 Feb; 98(2):640-50. PubMed ID: 18484622
    [Abstract] [Full Text] [Related]

  • 3. Stabilizing formulations for inhalable powders of live-attenuated measles virus vaccine.
    Burger JL, Cape SP, Braun CS, McAdams DH, Best JA, Bhagwat P, Pathak P, Rebits LG, Sievers RE.
    J Aerosol Med Pulm Drug Deliv; 2008 Mar; 21(1):25-34. PubMed ID: 18518829
    [Abstract] [Full Text] [Related]

  • 4. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P, Sandhu H, Singhal D, Malick W, Shah N, Kislalioglu MS.
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Particle design of poorly water-soluble drug substances using supercritical fluid technologies.
    Yasuji T, Takeuchi H, Kawashima Y.
    Adv Drug Deliv Rev; 2008 Feb 14; 60(3):388-98. PubMed ID: 18068261
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique.
    Kang Y, Wu J, Yin G, Huang Z, Yao Y, Liao X, Chen A, Pu X, Liao L.
    Eur J Pharm Biopharm; 2008 Sep 14; 70(1):85-97. PubMed ID: 18495445
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals.
    Pasquali I, Bettini R, Giordano F.
    Adv Drug Deliv Rev; 2008 Feb 14; 60(3):399-410. PubMed ID: 17964684
    [Abstract] [Full Text] [Related]

  • 11. Application of supercritical fluid to preparation of powders of high-molecular weight drugs for inhalation.
    Okamoto H, Danjo K.
    Adv Drug Deliv Rev; 2008 Feb 14; 60(3):433-46. PubMed ID: 17996326
    [Abstract] [Full Text] [Related]

  • 12. Production of cromolyn sodium microparticles for aerosol delivery by supercritical assisted atomization.
    Reverchon E, Adami R, Caputo G.
    AAPS PharmSciTech; 2007 Dec 21; 8(4):E114. PubMed ID: 18181535
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Supercritical fluid technology: concepts and pharmaceutical applications.
    Deshpande PB, Kumar GA, Kumar AR, Shavi GV, Karthik A, Reddy MS, Udupa N.
    PDA J Pharm Sci Technol; 2011 Dec 21; 65(3):333-44. PubMed ID: 22293238
    [Abstract] [Full Text] [Related]

  • 17. Bioactive insulin microparticles produced by supercritical fluid assisted atomization with an enhanced mixer.
    Du Z, Tang C, Guan YX, Yao SJ, Zhu ZQ.
    Int J Pharm; 2013 Sep 15; 454(1):174-82. PubMed ID: 23860361
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies.
    Rogers TL, Johnston KP, Williams RO.
    Drug Dev Ind Pharm; 2001 Nov 15; 27(10):1003-15. PubMed ID: 11794803
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.