These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


402 related items for PubMed ID: 18584329

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip.
    Suzuki H, Tabata KV, Noji H, Takeuchi S.
    Biosens Bioelectron; 2007 Jan 15; 22(6):1111-5. PubMed ID: 16730973
    [Abstract] [Full Text] [Related]

  • 3. Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip.
    Hromada LP, Nablo BJ, Kasianowicz JJ, Gaitan MA, DeVoe DL.
    Lab Chip; 2008 Apr 15; 8(4):602-8. PubMed ID: 18369516
    [Abstract] [Full Text] [Related]

  • 4. Reconstitution of ion channels in agarose-supported silicon orifices.
    Maurer JA, White VE, Dougherty DA, Nadeau JL.
    Biosens Bioelectron; 2007 May 15; 22(11):2577-84. PubMed ID: 17098413
    [Abstract] [Full Text] [Related]

  • 5. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis.
    Funakoshi K, Suzuki H, Takeuchi S.
    Anal Chem; 2006 Dec 15; 78(24):8169-74. PubMed ID: 17165804
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Highly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate microfluidic chip.
    Suzuki H, Tabata KV, Noji H, Takeuchi S.
    Langmuir; 2006 Feb 14; 22(4):1937-42. PubMed ID: 16460131
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Detection of single ion channel activity on a chip using tethered bilayer membranes.
    Andersson M, Keizer HM, Zhu C, Fine D, Dodabalapur A, Duran RS.
    Langmuir; 2007 Mar 13; 23(6):2924-7. PubMed ID: 17286424
    [Abstract] [Full Text] [Related]

  • 11. Ion channel and toxin measurement using a high throughput lipid membrane platform.
    Poulos JL, Jeon TJ, Damoiseaux R, Gillespie EJ, Bradley KA, Schmidt JJ.
    Biosens Bioelectron; 2009 Feb 15; 24(6):1806-10. PubMed ID: 18849158
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Automated lipid bilayer and ion channel measurement platform.
    Thapliyal T, Poulos JL, Schmidt JJ.
    Biosens Bioelectron; 2011 Jan 15; 26(5):2651-4. PubMed ID: 20197233
    [Abstract] [Full Text] [Related]

  • 14. A novel method for artificial lipid-bilayer formation.
    Ide T, Ichikawa T.
    Biosens Bioelectron; 2005 Oct 15; 21(4):672-7. PubMed ID: 16202882
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Formation of high-resistance supported lipid bilayer on the surface of a silicon substrate with microelectrodes.
    Urisu T, Rahman MM, Uno H, Tero R, Nonogaki Y.
    Nanomedicine; 2005 Dec 15; 1(4):317-22. PubMed ID: 17292105
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Tethered bilayer lipid membranes self-assembled on mercury electrodes.
    Moncelli MR, Becucci L, Schiller SM.
    Bioelectrochemistry; 2004 Jun 15; 63(1-2):161-7. PubMed ID: 15110267
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.