These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
148 related items for PubMed ID: 18588987
1. I learned from what you did: Retrieving visuomotor associations learned by observation. Monfardini E, Brovelli A, Boussaoud D, Takerkart S, Wicker B. Neuroimage; 2008 Sep 01; 42(3):1207-13. PubMed ID: 18588987 [Abstract] [Full Text] [Related]
2. Learning arbitrary visuomotor associations: temporal dynamic of brain activity. Toni I, Ramnani N, Josephs O, Ashburner J, Passingham RE. Neuroimage; 2001 Nov 01; 14(5):1048-57. PubMed ID: 11697936 [Abstract] [Full Text] [Related]
3. FMRI adaptation during performance of learned arbitrary visuomotor conditional associations. Chouinard PA, Goodale MA. Neuroimage; 2009 Dec 01; 48(4):696-706. PubMed ID: 19619662 [Abstract] [Full Text] [Related]
4. Understanding the neural computations of arbitrary visuomotor learning through fMRI and associative learning theory. Brovelli A, Laksiri N, Nazarian B, Meunier M, Boussaoud D. Cereb Cortex; 2008 Jul 01; 18(7):1485-95. PubMed ID: 18033767 [Abstract] [Full Text] [Related]
5. Neuronal modifications during visuomotor association learning assessed by electric brain tomography. Praeg E, Esslen M, Lutz K, Jancke L. Brain Topogr; 2006 Jul 01; 19(1-2):61-75. PubMed ID: 17136595 [Abstract] [Full Text] [Related]
6. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study. Tanabe HC, Sadato N. Neuroscience; 2009 May 19; 160(3):688-97. PubMed ID: 19285546 [Abstract] [Full Text] [Related]
7. The neural substrate of the ideomotor principle: an event-related fMRI analysis. Melcher T, Weidema M, Eenshuistra RM, Hommel B, Gruber O. Neuroimage; 2008 Feb 01; 39(3):1274-88. PubMed ID: 17988896 [Abstract] [Full Text] [Related]
8. Prefrontal involvement in imitation learning of hand actions: effects of practice and expertise. Vogt S, Buccino G, Wohlschläger AM, Canessa N, Shah NJ, Zilles K, Eickhoff SB, Freund HJ, Rizzolatti G, Fink GR. Neuroimage; 2007 Oct 01; 37(4):1371-83. PubMed ID: 17698372 [Abstract] [Full Text] [Related]
9. Doing, seeing, or both: effects of learning condition on subsequent action perception. Wiggett AJ, Hudson M, Clifford A, Tipper SP, Downing PE. Soc Neurosci; 2012 Oct 01; 7(6):606-21. PubMed ID: 22591123 [Abstract] [Full Text] [Related]
10. Mirror-image representation of action in the anterior parietal cortex. Shmuelof L, Zohary E. Nat Neurosci; 2008 Nov 01; 11(11):1267-9. PubMed ID: 18820694 [Abstract] [Full Text] [Related]
11. Neural correlates of "analytical-specific visual perception" and degree of task difficulty as investigated by the Mangina-Test: a functional magnetic resonance imaging (fMRI) study in young healthy adults. Mangina CA, Beuzeron-Mangina H, Ricciardi E, Pietrini P, Chiarenza GA, Casarotto S. Int J Psychophysiol; 2009 Aug 01; 73(2):150-6. PubMed ID: 19414052 [Abstract] [Full Text] [Related]
14. Dissociable substrates for body motion and physical experience in the human action observation network. Cross ES, Hamilton AF, Kraemer DJ, Kelley WM, Grafton ST. Eur J Neurosci; 2009 Oct 01; 30(7):1383-92. PubMed ID: 19788567 [Abstract] [Full Text] [Related]
18. Neural substrates for visual pattern recognition learning in Igo. Itoh K, Kitamura H, Fujii Y, Nakada T. Brain Res; 2008 Aug 28; 1227():162-73. PubMed ID: 18621033 [Abstract] [Full Text] [Related]
19. A hippocampal-parietal network for learning an ordered sequence. Van Opstal F, Verguts T, Orban GA, Fias W. Neuroimage; 2008 Mar 01; 40(1):333-41. PubMed ID: 18155926 [Abstract] [Full Text] [Related]