These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


453 related items for PubMed ID: 18593644

  • 1. High-pressure destruction kinetics of Clostridium sporogenes spores in ground beef at elevated temperatures.
    Zhu S, Naim F, Marcotte M, Ramaswamy H, Shao Y.
    Int J Food Microbiol; 2008 Aug 15; 126(1-2):86-92. PubMed ID: 18593644
    [Abstract] [Full Text] [Related]

  • 2. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation.
    Naim F, Zareifard MR, Zhu S, Huizing RH, Grabowski S, Marcotte M.
    Food Microbiol; 2008 Oct 15; 25(7):936-41. PubMed ID: 18721685
    [Abstract] [Full Text] [Related]

  • 3. Strategy to inactivate Clostridium perfringens spores in meat products.
    Akhtar S, Paredes-Sabja D, Torres JA, Sarker MR.
    Food Microbiol; 2009 May 15; 26(3):272-7. PubMed ID: 19269568
    [Abstract] [Full Text] [Related]

  • 4. Thermal inactivation of Bacillus cereus and Clostridium perfringens vegetative cells and spores in pork luncheon roll.
    Byrne B, Dunne G, Bolton DJ.
    Food Microbiol; 2006 Dec 15; 23(8):803-8. PubMed ID: 16943086
    [Abstract] [Full Text] [Related]

  • 5. Combined effects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringens type A and Clostridium sporogenes in buffer solutions.
    Paredes-Sabja D, Gonzalez M, Sarker MR, Torres JA.
    J Food Sci; 2007 Aug 15; 72(6):M202-6. PubMed ID: 17995687
    [Abstract] [Full Text] [Related]

  • 6. Temperature-assisted high hydrostatic pressure inactivation of Staphylococcus aureus in a ham model system: evaluation in selective and nonselective medium.
    Tassou CC, Panagou EZ, Samaras FJ, Galiatsatou P, Mallidis CG.
    J Appl Microbiol; 2008 Jun 15; 104(6):1764-73. PubMed ID: 18298540
    [Abstract] [Full Text] [Related]

  • 7. Microbial inactivation kinetics in soymilk during continuous flow high-pressure throttling.
    Sharma V, Singh RK, Toledo RT.
    J Food Sci; 2009 Aug 15; 74(6):M268-75. PubMed ID: 19723211
    [Abstract] [Full Text] [Related]

  • 8. Effects of inoculum level and pressure pulse on the inactivation of Clostridium sporogenes spores by pressure-assisted thermal processing.
    Ahn J, Balasubramaniam VM.
    J Microbiol Biotechnol; 2007 Apr 15; 17(4):616-23. PubMed ID: 18051273
    [Abstract] [Full Text] [Related]

  • 9. Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing.
    Ahn J, Balasubramaniam VM, Yousef AE.
    Int J Food Microbiol; 2007 Feb 15; 113(3):321-9. PubMed ID: 17196696
    [Abstract] [Full Text] [Related]

  • 10. Comparison of viability and heat resistance of Clostridium sporogenes stored at different temperatures.
    Mah JH, Kang DH, Tang J.
    J Food Sci; 2009 Feb 15; 74(1):M23-7. PubMed ID: 19200102
    [Abstract] [Full Text] [Related]

  • 11. Use of mild-heat treatment following high-pressure processing to prevent recovery of pressure-injured Listeria monocytogenes in milk.
    Koseki S, Mizuno Y, Yamamoto K.
    Food Microbiol; 2008 Apr 15; 25(2):288-93. PubMed ID: 18206771
    [Abstract] [Full Text] [Related]

  • 12. Effects of minerals on sporulation and heat resistance of Clostridium sporogenes.
    Mah JH, Kang DH, Tang J.
    Int J Food Microbiol; 2008 Dec 10; 128(2):385-9. PubMed ID: 18986726
    [Abstract] [Full Text] [Related]

  • 13. Assessment of Clostridium perfringens spore response to high hydrostatic pressure and heat with nisin.
    Gao Y, Qiu W, Wu D, Fu Q.
    Appl Biochem Biotechnol; 2011 Aug 10; 164(7):1083-95. PubMed ID: 21340537
    [Abstract] [Full Text] [Related]

  • 14. Heat resistance of Clostridium sordellii spores.
    Kozma-Sipos Z, Szigeti J, Asványi B, Varga L.
    Anaerobe; 2010 Jun 10; 16(3):226-8. PubMed ID: 20152919
    [Abstract] [Full Text] [Related]

  • 15. Some microbiological aspects of inedible rendering processes.
    Hansen PI, Olgaard K.
    Zentralbl Bakteriol Mikrobiol Hyg B; 1984 Dec 10; 180(1):3-20. PubMed ID: 6441385
    [Abstract] [Full Text] [Related]

  • 16. Combined high pressure and thermal processing on inactivation of type A and proteolytic type B spores of Clostridium botulinum.
    Reddy NR, Marshall KM, Morrissey TR, Loeza V, Patazca E, Skinner GE, Krishnamurthy K, Larkin JW.
    J Food Prot; 2013 Aug 10; 76(8):1384-92. PubMed ID: 23905794
    [Abstract] [Full Text] [Related]

  • 17. Response surface model for prediction of growth parameters from spores of Clostridium sporogenes under different experimental conditions.
    Dong Q, Tu K, Guo L, Li H, Zhao Y.
    Food Microbiol; 2007 Sep 10; 24(6):624-32. PubMed ID: 17418314
    [Abstract] [Full Text] [Related]

  • 18. Behavior of inactivation kinetics of Escherichia coli by dense phase carbon dioxide.
    Liao H, Zhang Y, Hu X, Liao X, Wu J.
    Int J Food Microbiol; 2008 Aug 15; 126(1-2):93-7. PubMed ID: 18565607
    [Abstract] [Full Text] [Related]

  • 19. Exploiting the combined effects of high pressure and moderate heat with nisin on inactivation of Clostridium botulinum spores.
    Gao YL, Ju XR.
    J Microbiol Methods; 2008 Jan 15; 72(1):20-8. PubMed ID: 18068839
    [Abstract] [Full Text] [Related]

  • 20. Conditions for high pressure inactivation of Vibrio parahaemolyticus in oysters.
    Kural AG, Shearer AE, Kingsley DH, Chen H.
    Int J Food Microbiol; 2008 Sep 30; 127(1-2):1-5. PubMed ID: 18547664
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.