These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
211 related items for PubMed ID: 18594858
1. Ricinus communis cyclophilin: functional characterisation of a sieve tube protein involved in protein folding. Gottschalk M, Dolgener E, Xoconostle-Cázares B, Lucas WJ, Komor E, Schobert C. Planta; 2008 Sep; 228(4):687-700. PubMed ID: 18594858 [Abstract] [Full Text] [Related]
2. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter. Bauer SN, Nowak H, Keller F, Kallarackal J, Hajirezaei MR, Komor E. Physiol Plant; 2014 Sep; 152(1):130-7. PubMed ID: 24446756 [Abstract] [Full Text] [Related]
3. Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Balachandran S, Xiang Y, Schobert C, Thompson GA, Lucas WJ. Proc Natl Acad Sci U S A; 1997 Dec 09; 94(25):14150-5. PubMed ID: 9391168 [Abstract] [Full Text] [Related]
4. Diurnal changes in assimilate concentrations and fluxes in the phloem of castor bean (Ricinus communis L.) and tansy (Tanacetum vulgare L.). Kallarackal J, Bauer SN, Nowak H, Hajirezaei MR, Komor E. Planta; 2012 Jul 09; 236(1):209-23. PubMed ID: 22328125 [Abstract] [Full Text] [Related]
5. Cloning of the cDNA for glutaredoxin, an abundant sieve-tube exudate protein from Ricinus communis L. and characterisation of the glutathione-dependent thiol-reduction system in sieve tubes. Szederkényi J, Komor E, Schobert C. Planta; 1997 Jul 09; 202(3):349-56. PubMed ID: 9232906 [Abstract] [Full Text] [Related]
6. Characterization of Ricinus communis phloem profilin, RcPRO1. Schobert C, Gottschalk M, Kovar DR, Staiger CJ, Yoo BC, Lucas WJ. Plant Mol Biol; 2000 Mar 09; 42(5):719-30. PubMed ID: 10809444 [Abstract] [Full Text] [Related]
7. Identification of Salmonella Typhimurium Peptidyl-prolyl cis-trans Isomerase B (PPIase B) and Assessment of their Role in the Protein Folding. Kumawat M, Karuna I, Ahlawat N, Ahlawat S. Protein Pept Lett; 2020 Mar 09; 27(8):744-750. PubMed ID: 32096737 [Abstract] [Full Text] [Related]
8. Bioinformatic and expression analysis of the Brassica napus L. cyclophilins. Hanhart P, Thieß M, Amari K, Bajdzienko K, Giavalisco P, Heinlein M, Kehr J. Sci Rep; 2017 May 04; 7(1):1514. PubMed ID: 28473712 [Abstract] [Full Text] [Related]
9. Enzyme activity and structural features of three single-domain phloem cyclophilins from Brassica napus. Hanhart P, Falke S, Garbe M, Rose V, Thieß M, Betzel C, Kehr J. Sci Rep; 2019 Jun 27; 9(1):9368. PubMed ID: 31249367 [Abstract] [Full Text] [Related]
10. Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata. Ishiwatari Y, Fujiwara T, McFarland KC, Nemoto K, Hayashi H, Chino M, Lucas WJ. Planta; 1998 May 27; 205(1):12-22. PubMed ID: 9599802 [Abstract] [Full Text] [Related]
11. Structural and Functional Insights into Human Nuclear Cyclophilins. Rajiv C, Davis TL. Biomolecules; 2018 Dec 04; 8(4):. PubMed ID: 30518120 [Abstract] [Full Text] [Related]
12. Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium. Hazama K, Nagata S, Fujimori T, Yanagisawa S, Yoneyama T. Physiol Plant; 2015 Jun 04; 154(2):243-55. PubMed ID: 25403762 [Abstract] [Full Text] [Related]
13. Identification and functional analysis of a novel parvulin-type peptidyl-prolyl isomerase from Gossypium hirsutum. Wang P, Li XZ, Cui HR, Feng YG, Wang XY. Plant Physiol Biochem; 2014 Mar 04; 76():58-66. PubMed ID: 24468661 [Abstract] [Full Text] [Related]
14. A phloem-enriched cDNA library from Ricinus: insights into phloem function. Doering-Saad C, Newbury HJ, Couldridge CE, Bale JS, Pritchard J. J Exp Bot; 2006 Mar 04; 57(12):3183-93. PubMed ID: 16936221 [Abstract] [Full Text] [Related]
15. A family of cyclophilin-like molecular chaperones in Plasmodium falciparum. Marín-Menéndez A, Monaghan P, Bell A. Mol Biochem Parasitol; 2012 Jul 04; 184(1):44-7. PubMed ID: 22546550 [Abstract] [Full Text] [Related]
16. Proteolytic processing of CmPP36, a protein from the cytochrome b(5) reductase family, is required for entry into the phloem translocation pathway. Xoconostle-Cázares B, Ruiz-Medrano R, Lucas WJ. Plant J; 2000 Dec 04; 24(6):735-47. PubMed ID: 11135108 [Abstract] [Full Text] [Related]
17. Escherichia coli cyclophilin B binds a highly distorted form of trans-prolyl peptide isomer. Konno M, Sano Y, Okudaira K, Kawaguchi Y, Yamagishi-Ohmori Y, Fushinobu S, Matsuzawa H. Eur J Biochem; 2004 Sep 04; 271(18):3794-803. PubMed ID: 15355356 [Abstract] [Full Text] [Related]
18. Phloem mobility and translocation of fluorescent conjugate containing glucose and NBD in castor bean (Ricinus communis). Lei Z, Wang J, Mao G, Wen Y, Xu H. J Photochem Photobiol B; 2014 Mar 05; 132():10-6. PubMed ID: 24561186 [Abstract] [Full Text] [Related]
19. Sucrose carrier RcSCR1 is involved in sucrose retrieval, but not in sucrose unloading in growing hypocotyls of Ricinus communis L. Eisenbarth DA, Weig AR. Plant Biol (Stuttg); 2005 Jan 05; 7(1):98-103. PubMed ID: 15666209 [Abstract] [Full Text] [Related]
20. Gene expression and biochemical characterization of Azotobacter vinelandii cyclophilins and Protein Interaction Studies of the cytoplasmic isoform with dnaK and lpxH. Dimou M, Venieraki A, Liakopoulos G, Kouri ED, Tampakaki A, Katinakis P. J Mol Microbiol Biotechnol; 2011 Jan 05; 20(3):176-90. PubMed ID: 21734408 [Abstract] [Full Text] [Related] Page: [Next] [New Search]