These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Validity of the Michaelis-Menten equation--steady-state or reactant stationary assumption: that is the question. Schnell S. FEBS J; 2014 Jan; 281(2):464-72. PubMed ID: 24245583 [Abstract] [Full Text] [Related]
3. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations. Goličnik M. Biochem Mol Biol Educ; 2011 Jan; 39(2):117-25. PubMed ID: 21445903 [Abstract] [Full Text] [Related]
5. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM. Adv Colloid Interface Sci; 2004 Nov 29; 111(1-2):3-27. PubMed ID: 15571660 [Abstract] [Full Text] [Related]
6. A new graphical method for determining parameters in Michaelis-Menten-type kinetics for enzymatic lactose hydrolysis. Yang ST, Okos MR. Biotechnol Bioeng; 1989 Sep 29; 34(6):763-73. PubMed ID: 18588163 [Abstract] [Full Text] [Related]
7. Explicit analytic approximations for time-dependent solutions of the generalized integrated Michaelis-Menten equation. Goličnik M. Anal Biochem; 2011 Apr 15; 411(2):303-5. PubMed ID: 21241654 [Abstract] [Full Text] [Related]
9. Validity of quasi-steady-state and transfer-function representations for input-output relation in a Michaelis-Menten reaction. Sakamoto N. Biotechnol Bioeng; 1986 Aug 15; 28(8):1191-9. PubMed ID: 18555445 [Abstract] [Full Text] [Related]
13. Kinlsq: a program for fitting kinetics data with numerically integrated rate equations and its application to the analysis of slow, tight-binding inhibition data. Gutheil WG, Kettner CA, Bachovchin WW. Anal Biochem; 1994 Nov 15; 223(1):13-20. PubMed ID: 7695087 [Abstract] [Full Text] [Related]
14. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different predictor variables. Liao F, Zhu XY, Wang YM, Zuo YP. J Biochem Biophys Methods; 2005 Jan 31; 62(1):13-24. PubMed ID: 15656940 [Abstract] [Full Text] [Related]
15. Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis-Menten constant. Rami Tzafriri A, Edelman ER. J Theor Biol; 2007 Apr 21; 245(4):737-48. PubMed ID: 17234216 [Abstract] [Full Text] [Related]
16. Kinetic modelling of the photocatalytic inactivation of bacteria. Marugán J, van Grieken R, Cassano AE, Alfano OM. Water Sci Technol; 2010 Apr 21; 61(6):1547-53. PubMed ID: 20351434 [Abstract] [Full Text] [Related]
17. A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant. Hoh CY, Cord-Ruwisch R. Biotechnol Bioeng; 1996 Sep 05; 51(5):597-604. PubMed ID: 18629824 [Abstract] [Full Text] [Related]
18. Measurements of kinetic parameters in a microfluidic reactor. Kerby MB, Legge RS, Tripathi A. Anal Chem; 2006 Dec 15; 78(24):8273-80. PubMed ID: 17165816 [Abstract] [Full Text] [Related]
19. Off-line form of the Michaelis-Menten equation for studying the reaction kinetics in a polymer microchip integrated with enzyme microreactor. Liu AL, Zhou T, He FY, Xu JJ, Lu Y, Chen HY, Xia XH. Lab Chip; 2006 Jun 15; 6(6):811-8. PubMed ID: 16738735 [Abstract] [Full Text] [Related]
20. Accurate kinetic parameter estimation during progress curve analysis of systems with endogenous substrate production. Goudar CT. Biotechnol Bioeng; 2011 Oct 15; 108(10):2499-503. PubMed ID: 21520020 [Abstract] [Full Text] [Related] Page: [Next] [New Search]