These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
306 related items for PubMed ID: 18600786
21. Xylanase production by Aspergillus niger FTCC 5003 using palm kernel cake in fermentative bioprocess. Abdeshahian P, Samat N, Yusoff WM. Pak J Biol Sci; 2009 Aug 01; 12(15):1049-55. PubMed ID: 19943460 [Abstract] [Full Text] [Related]
23. The behavior of kinetic parameters in production of pectinase and xylanase by solid-state fermentation. Rodríguez-Fernández DE, Rodríguez-León JA, de Carvalho JC, Sturm W, Soccol CR. Bioresour Technol; 2011 Nov 01; 102(22):10657-62. PubMed ID: 21945204 [Abstract] [Full Text] [Related]
24. Banana Peels: A Promising Substrate for the Coproduction of Pectinase and Xylanase from Aspergillus fumigatus MS16. Zehra M, Syed MN, Sohail M. Pol J Microbiol; 2020 Sep 01; 69(1):19-26. PubMed ID: 32189485 [Abstract] [Full Text] [Related]
25. Investigating the expression of F10 and G11 xylanases in Aspergillus niger A09 with qPCR. Cui S, Wang T, Hu H, Liu L, Song A, Chen H. Can J Microbiol; 2016 Sep 01; 62(9):744-52. PubMed ID: 27348293 [Abstract] [Full Text] [Related]
26. Improvement of xylanase production in solid state fermentation by alkali-tolerant Aspergillus fumigatus MKU1 using a fractional factorial design. Thiagarajan S, Jeya M, Gunasekaran P. Indian J Exp Biol; 2005 Oct 01; 43(10):887-91. PubMed ID: 16235722 [Abstract] [Full Text] [Related]
27. The optimization of fermentation conditions for Pichia pastoris GS115 producing recombinant xylanase. Sun T, Yan P, Zhan N, Zhang L, Chen Z, Zhang A, Shan A. Eng Life Sci; 2020 Apr 01; 20(5-6):216-228. PubMed ID: 32874185 [Abstract] [Full Text] [Related]
28. Optimization of cellulase-free xylanase production by thermophilic Streptomyces thermovulgaris TISTR1948 through Plackett-Burman and response surface methodological approaches. Chaiyaso T, Kuntiya A, Techapun C, Leksawasdi N, Seesuriyachan P, Hanmoungjai P. Biosci Biotechnol Biochem; 2011 Apr 01; 75(3):531-7. PubMed ID: 21389598 [Abstract] [Full Text] [Related]
29. Xylanolytic enzyme production by an Aspergillus niger isolate. Costa-Ferreira M, Dias A, Máximo C, Morgado MJ, Sena-Martins G, Duarte JC. Appl Biochem Biotechnol; 1994 Mar 01; 44(3):231-42. PubMed ID: 8198405 [Abstract] [Full Text] [Related]
30. Optimization of acid protease production by Aspergillus niger I1 on shrimp peptone using statistical experimental design. Siala R, Frikha F, Mhamdi S, Nasri M, Kamoun AS. ScientificWorldJournal; 2012 Mar 01; 2012():564932. PubMed ID: 22593695 [Abstract] [Full Text] [Related]
31. [Fermentation optimization by response surface methodology for enhanced production of beta-glucosidase of Aspergillus niger HDF05]. Ling H, Ge J, Ping W, Xu X. Sheng Wu Gong Cheng Xue Bao; 2011 Mar 01; 27(3):419-26. PubMed ID: 21650023 [Abstract] [Full Text] [Related]
32. Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. Nagar S, Gupta VK, Kumar D, Kumar L, Kuhad RC. J Ind Microbiol Biotechnol; 2010 Jan 01; 37(1):71-83. PubMed ID: 19859753 [Abstract] [Full Text] [Related]
33. Improved mannan-degrading enzymes' production by Aspergillus niger through medium optimization. Mohamad SN, Ramanan RN, Mohamad R, Ariff AB. N Biotechnol; 2011 Feb 28; 28(2):146-52. PubMed ID: 20970530 [Abstract] [Full Text] [Related]
34. Sequential optimization of xylanase production using Sapindus mukorossi seed waste in Lechevalieria aerocolonigenes. Pawar R, Pawar S, Rathod V. Prep Biochem Biotechnol; 2022 Feb 28; 52(2):135-143. PubMed ID: 34533428 [Abstract] [Full Text] [Related]
35. Enhanced production of Aspergillus niger inulinase from sugar beet molasses and its kinetic modeling. Germec M, Turhan I. Biotechnol Lett; 2020 Oct 28; 42(10):1939-1955. PubMed ID: 32424732 [Abstract] [Full Text] [Related]
37. Improvement of xylanase production by thermophilic fungus Thermomyces lanuginosus SDYKY-1 using response surface methodology. Su Y, Zhang X, Hou Z, Zhu X, Guo X, Ling P. N Biotechnol; 2011 Jan 31; 28(1):40-6. PubMed ID: 20541633 [Abstract] [Full Text] [Related]
38. Xylanase production from Bacillus aerophilus KGJ2 and its application in xylooligosaccharides preparation. Gowdhaman D, Manaswini VS, Jayanthi V, Dhanasri M, Jeyalakshmi G, Gunasekar V, Sugumaran KR, Ponnusami V. Int J Biol Macromol; 2014 Mar 31; 64():90-8. PubMed ID: 24296408 [Abstract] [Full Text] [Related]
39. Optimization of physical and morphological regime for improved cellulase free xylanase production by fed batch fermentation using Aspergillus niger (KP874102.1) and its application in bio-bleaching. Prasad Uday US, Bandyopadhyay TK, Goswami S, Bhunia B. Bioengineered; 2017 Mar 04; 8(2):137-146. PubMed ID: 27780405 [Abstract] [Full Text] [Related]
40. Optimization of ginsenosides hydrolyzing beta-glucosidase production from Aspergillus niger using response surface methodology. Hu JN, Zhu XM, Lee KT, Zheng YN, Li W, Han LK, Fang ZM, Gu LJ, Sun BS, Wang CY, Sung CK. Biol Pharm Bull; 2008 Oct 04; 31(10):1870-4. PubMed ID: 18827346 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]