These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


945 related items for PubMed ID: 18603359

  • 1. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora.
    Moreno-Jiménez E, Peñalosa JM, Manzano R, Carpena-Ruiz RO, Gamarra R, Esteban E.
    J Hazard Mater; 2009 Mar 15; 162(2-3):854-9. PubMed ID: 18603359
    [Abstract] [Full Text] [Related]

  • 2. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H, Probst A, Liao B.
    Sci Total Environ; 2005 Mar 01; 339(1-3):153-66. PubMed ID: 15740766
    [Abstract] [Full Text] [Related]

  • 3. Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation.
    Alvarez E, Fernández Marcos ML, Vaamonde C, Fernández-Sanjurjo MJ.
    Sci Total Environ; 2003 Sep 01; 313(1-3):185-97. PubMed ID: 12922070
    [Abstract] [Full Text] [Related]

  • 4. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J, Xie ZM, Zhu YG, Naidu R.
    J Environ Sci (China); 2005 Sep 01; 17(6):881-5. PubMed ID: 16465871
    [Abstract] [Full Text] [Related]

  • 5. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A, Noori M, Yazdi HL.
    Ecotoxicol Environ Saf; 2009 Jul 01; 72(5):1349-53. PubMed ID: 19386362
    [Abstract] [Full Text] [Related]

  • 6. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China.
    Yanqun Z, Yuan L, Schvartz C, Langlade L, Fan L.
    Environ Int; 2004 Jun 01; 30(4):567-76. PubMed ID: 15031017
    [Abstract] [Full Text] [Related]

  • 7. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain.
    Rodríguez L, Ruiz E, Alonso-Azcárate J, Rincón J.
    J Environ Manage; 2009 Feb 01; 90(2):1106-16. PubMed ID: 18572301
    [Abstract] [Full Text] [Related]

  • 8. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.
    Bose S, Bhattacharyya AK.
    Chemosphere; 2008 Jan 01; 70(7):1264-72. PubMed ID: 17825356
    [Abstract] [Full Text] [Related]

  • 9. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.
    Micó C, Recatalá L, Peris M, Sánchez J.
    Chemosphere; 2006 Oct 01; 65(5):863-72. PubMed ID: 16635506
    [Abstract] [Full Text] [Related]

  • 10. Metal accumulation in wild plants surrounding mining wastes.
    González RC, González-Chávez MC.
    Environ Pollut; 2006 Nov 01; 144(1):84-92. PubMed ID: 16631286
    [Abstract] [Full Text] [Related]

  • 11. Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain).
    Conesa HM, Faz A, Arnaldos R.
    Chemosphere; 2007 Jan 01; 66(1):38-44. PubMed ID: 16820188
    [Abstract] [Full Text] [Related]

  • 12. Long-term effects of the Aznalcóllar mine spill-heavy metal content and mobility in soils and sediments of the Guadiamar river valley (SW Spain).
    Kraus U, Wiegand J.
    Sci Total Environ; 2006 Aug 31; 367(2-3):855-71. PubMed ID: 16500695
    [Abstract] [Full Text] [Related]

  • 13. Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils.
    Boularbah A, Schwartz C, Bitton G, Morel JL.
    Chemosphere; 2006 May 31; 63(5):802-10. PubMed ID: 16213554
    [Abstract] [Full Text] [Related]

  • 14. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt.
    Rashed MN.
    J Hazard Mater; 2010 Jun 15; 178(1-3):739-46. PubMed ID: 20188467
    [Abstract] [Full Text] [Related]

  • 15. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S, Lai MS, Lin CW.
    Environ Pollut; 2006 Dec 15; 144(3):918-25. PubMed ID: 16603295
    [Abstract] [Full Text] [Related]

  • 16. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).
    Lai HY, Chen ZS.
    Chemosphere; 2005 Aug 15; 60(8):1062-71. PubMed ID: 15993153
    [Abstract] [Full Text] [Related]

  • 17. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China.
    Zhuang P, McBride MB, Xia H, Li N, Li Z.
    Sci Total Environ; 2009 Feb 15; 407(5):1551-61. PubMed ID: 19068266
    [Abstract] [Full Text] [Related]

  • 18. Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils.
    Guo Z, Megharaj M, Beer M, Ming H, Mahmudur Rahman M, Wu W, Naidu R.
    Bioresour Technol; 2009 Sep 15; 100(17):3831-6. PubMed ID: 19349173
    [Abstract] [Full Text] [Related]

  • 19. Using Mediterranean shrubs for the phytoremediation of a soil impacted by pyritic wastes in Southern Spain: a field experiment.
    Moreno-Jiménez E, Vázquez S, Carpena-Ruiz RO, Esteban E, Peñalosa JM.
    J Environ Manage; 2011 Jun 15; 92(6):1584-90. PubMed ID: 21353375
    [Abstract] [Full Text] [Related]

  • 20. Enrichment of marsh soils with heavy metals by effect of anthropic pollution.
    Vega FA, Covelo EF, Cerqueira B, Andrade ML.
    J Hazard Mater; 2009 Oct 30; 170(2-3):1056-63. PubMed ID: 19525065
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 48.