These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


348 related items for PubMed ID: 18613119

  • 1. The knock-out of ARP3a gene affects F-actin cytoskeleton organization altering cellular tip growth, morphology and development in moss Physcomitrella patens.
    Finka A, Saidi Y, Goloubinoff P, Neuhaus JM, Zrÿd JP, Schaefer DG.
    Cell Motil Cytoskeleton; 2008 Oct; 65(10):769-84. PubMed ID: 18613119
    [Abstract] [Full Text] [Related]

  • 2. Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution.
    Mosquna A, Katz A, Decker EL, Rensing SA, Reski R, Ohad N.
    Development; 2009 Jul; 136(14):2433-44. PubMed ID: 19542356
    [Abstract] [Full Text] [Related]

  • 3. NAPP and PIRP encode subunits of a putative wave regulatory protein complex involved in plant cell morphogenesis.
    Brembu T, Winge P, Seem M, Bones AM.
    Plant Cell; 2004 Sep; 16(9):2335-49. PubMed ID: 15316111
    [Abstract] [Full Text] [Related]

  • 4. PIPKs are essential for rhizoid elongation and caulonemal cell development in the moss Physcomitrella patens.
    Saavedra L, Balbi V, Lerche J, Mikami K, Heilmann I, Sommarin M.
    Plant J; 2011 Aug; 67(4):635-47. PubMed ID: 21554449
    [Abstract] [Full Text] [Related]

  • 5. Actin control over microtubules suggested by DISTORTED2 encoding the Arabidopsis ARPC2 subunit homolog.
    Saedler R, Mathur N, Srinivas BP, Kernebeck B, Hülskamp M, Mathur J.
    Plant Cell Physiol; 2004 Jul; 45(7):813-22. PubMed ID: 15295064
    [Abstract] [Full Text] [Related]

  • 6. In vivo visualization of F-actin structures during the development of the moss Physcomitrella patens.
    Finka A, Schaefer DG, Saidi Y, Goloubinoff P, Zrÿd JP.
    New Phytol; 2007 Jul; 174(1):63-76. PubMed ID: 17335498
    [Abstract] [Full Text] [Related]

  • 7. BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis.
    Djakovic S, Dyachok J, Burke M, Frank MJ, Smith LG.
    Development; 2006 Mar; 133(6):1091-100. PubMed ID: 16481352
    [Abstract] [Full Text] [Related]

  • 8. Microtubules regulate dynamic organization of vacuoles in Physcomitrella patens.
    Oda Y, Hirata A, Sano T, Fujita T, Hiwatashi Y, Sato Y, Kadota A, Hasebe M, Hasezawa S.
    Plant Cell Physiol; 2009 Apr; 50(4):855-68. PubMed ID: 19251746
    [Abstract] [Full Text] [Related]

  • 9. Phosphatase and Tensin Homolog Is a Growth Repressor of Both Rhizoid and Gametophore Development in the Moss Physcomitrella patens.
    Saavedra L, Catarino R, Heinz T, Heilmann I, Bezanilla M, Malhó R.
    Plant Physiol; 2015 Dec; 169(4):2572-86. PubMed ID: 26463087
    [Abstract] [Full Text] [Related]

  • 10. Isolation and characterization of new MIKC*-Type MADS-box genes from the moss Physcomitrella patens.
    Riese M, Faigl W, Quodt V, Verelst W, Matthes A, Saedler H, Münster T.
    Plant Biol (Stuttg); 2005 May; 7(3):307-14. PubMed ID: 15912451
    [Abstract] [Full Text] [Related]

  • 11. A PPR-DYW protein is required for splicing of a group II intron of cox1 pre-mRNA in Physcomitrella patens.
    Ichinose M, Tasaki E, Sugita C, Sugita M.
    Plant J; 2012 Apr; 70(2):271-8. PubMed ID: 22117821
    [Abstract] [Full Text] [Related]

  • 12. Physcomitrella patens: a model for tip cell growth and differentiation.
    Vidali L, Bezanilla M.
    Curr Opin Plant Biol; 2012 Dec; 15(6):625-31. PubMed ID: 23022392
    [Abstract] [Full Text] [Related]

  • 13. Physcomitrella patens: a model to investigate the role of RAC/ROP GTPase signalling in tip growth.
    Eklund DM, Svensson EM, Kost B.
    J Exp Bot; 2010 Apr; 61(7):1917-37. PubMed ID: 20368308
    [Abstract] [Full Text] [Related]

  • 14. Transcription of plastid genes is modulated by two nuclear-encoded alpha subunits of plastid RNA polymerase in the moss Physcomitrella patens.
    Kabeya Y, Kobayashi Y, Suzuki H, Itoh J, Sugita M.
    Plant J; 2007 Nov; 52(4):730-41. PubMed ID: 17894784
    [Abstract] [Full Text] [Related]

  • 15. Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake.
    Garciadeblas B, Barrero-Gil J, Benito B, Rodríguez-Navarro A.
    Plant J; 2007 Dec; 52(6):1080-93. PubMed ID: 17916113
    [Abstract] [Full Text] [Related]

  • 16. Effect of the energy supply on filamentous growth and development in Physcomitrella patens.
    Thelander M, Olsson T, Ronne H.
    J Exp Bot; 2005 Feb; 56(412):653-62. PubMed ID: 15611148
    [Abstract] [Full Text] [Related]

  • 17. The role of ARPC4 in tip growth and alignment of the polar axis in filaments of Physcomitrella patens.
    Perroud PF, Quatrano RS.
    Cell Motil Cytoskeleton; 2006 Mar; 63(3):162-71. PubMed ID: 16450411
    [Abstract] [Full Text] [Related]

  • 18. An Arabidopsis homolog of the bacterial peptidoglycan synthesis enzyme MurE has an essential role in chloroplast development.
    Garcia M, Myouga F, Takechi K, Sato H, Nabeshima K, Nagata N, Takio S, Shinozaki K, Takano H.
    Plant J; 2008 Mar; 53(6):924-34. PubMed ID: 18036201
    [Abstract] [Full Text] [Related]

  • 19. Profilin is essential for tip growth in the moss Physcomitrella patens.
    Vidali L, Augustine RC, Kleinman KP, Bezanilla M.
    Plant Cell; 2007 Nov; 19(11):3705-22. PubMed ID: 17981997
    [Abstract] [Full Text] [Related]

  • 20. Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway.
    Prigge MJ, Lavy M, Ashton NW, Estelle M.
    Curr Biol; 2010 Nov 09; 20(21):1907-12. PubMed ID: 20951049
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.