These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
399 related items for PubMed ID: 18618795
61. High-rate ferric sulfate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retention in a fluidized-bed reactor. Kinnunen PH, Puhakka JA. Biotechnol Bioeng; 2004 Mar 30; 85(7):697-705. PubMed ID: 14991647 [Abstract] [Full Text] [Related]
62. Organic removal activity in biofilm and suspended biomass fractions of MBBR systems. Piculell M, Welander T, Jönsson K. Water Sci Technol; 2014 Mar 30; 69(1):55-61. PubMed ID: 24434968 [Abstract] [Full Text] [Related]
65. Feasibility study of degradation of phenol in a fluidized bed bioreactor with a cyclodextrin polymer as biofilm carrier. Sevillano X, Isasi JR, Peñas FJ. Biodegradation; 2008 Jul 30; 19(4):589-97. PubMed ID: 18034360 [Abstract] [Full Text] [Related]
69. Influence of hydrodynamic conditions on biofilm behavior in a methanogenic inverse turbulent bed reactor. Michaud S, Bernet N, Roustan M, Delgenès JP. Biotechnol Prog; 2003 Jul 30; 19(3):858-63. PubMed ID: 12790650 [Abstract] [Full Text] [Related]
70. Biofilm development in a membrane-aerated biofilm reactor: effect of flow velocity on performance. Casey E, Glennon B, Hamer G. Biotechnol Bioeng; 2000 Feb 20; 67(4):476-86. PubMed ID: 10620763 [Abstract] [Full Text] [Related]
71. Effect of a solution containing citrate/Methylene Blue/parabens on Staphylococcus aureus bacteria and biofilm, and comparison with various heparin solutions. Sauer K, Steczko J, Ash SR. J Antimicrob Chemother; 2009 May 20; 63(5):937-45. PubMed ID: 19282330 [Abstract] [Full Text] [Related]
72. Bifurcational and dynamical analysis of a continuous biofilm reactor. Russo ME, Maffettone PL, Marzocchella A, Salatino P. J Biotechnol; 2008 Jun 30; 135(3):295-303. PubMed ID: 18511142 [Abstract] [Full Text] [Related]
73. Biofilm model calibration and microbial diversity study using Monte Carlo simulations. Brockmann D, Caylet A, Escudié R, Steyer JP, Bernet N. Biotechnol Bioeng; 2013 May 30; 110(5):1323-32. PubMed ID: 23280411 [Abstract] [Full Text] [Related]
75. Effects of nutrients on biofilm formation and detachment of a Pseudomonas putida strain isolated from a paper machine. Rochex A, Lebeault JM. Water Res; 2007 Jul 30; 41(13):2885-92. PubMed ID: 17532362 [Abstract] [Full Text] [Related]
77. Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. van Houten RT, Pol LW, Lettinga G. Biotechnol Bioeng; 1994 Aug 20; 44(5):586-94. PubMed ID: 18618794 [Abstract] [Full Text] [Related]
78. Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Gross R, Lang K, Bühler K, Schmid A. Biotechnol Bioeng; 2010 Mar 01; 105(4):705-17. PubMed ID: 19845014 [Abstract] [Full Text] [Related]
80. Online assessment of biofilm development, sloughing and forced detachment in tube reactor by means of magnetic resonance microscopy. Wagner M, Manz B, Volke F, Neu TR, Horn H. Biotechnol Bioeng; 2010 Sep 01; 107(1):172-81. PubMed ID: 20506514 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]