These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


604 related items for PubMed ID: 18619475

  • 1. Depression of spinal network activity by thiopental: shift from phasic to tonic GABA(A) receptor-mediated inhibition.
    Grasshoff C, Netzhammer N, Schweizer J, Antkowiak B, Hentschke H.
    Neuropharmacology; 2008 Oct; 55(5):793-802. PubMed ID: 18619475
    [Abstract] [Full Text] [Related]

  • 2. Modulation of presynaptic beta3-containing GABAA receptors limits the immobilizing actions of GABAergic anesthetics.
    Grasshoff C, Jurd R, Rudolph U, Antkowiak B.
    Mol Pharmacol; 2007 Sep; 72(3):780-7. PubMed ID: 17584992
    [Abstract] [Full Text] [Related]

  • 3. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C, Seebach B, Ziskind-Conhaim L.
    Neuroscience; 2005 Sep; 131(3):745-58. PubMed ID: 15730878
    [Abstract] [Full Text] [Related]

  • 4. GABA-mediated inhibition of glutamate release during ischemia in substantia gelatinosa of the adult rat.
    Matsumoto N, Kumamoto E, Furue H, Yoshimura M.
    J Neurophysiol; 2003 Jan; 89(1):257-64. PubMed ID: 12522177
    [Abstract] [Full Text] [Related]

  • 5. Modulation of gamma-aminobutyric acid A receptor function by thiopental in the rat spinal dorsal horn neurons.
    Yang CX, Xu H, Zhou KQ, Wang MY, Xu TL.
    Anesth Analg; 2006 Apr; 102(4):1114-20. PubMed ID: 16551908
    [Abstract] [Full Text] [Related]

  • 6. Phospholipase A2 activation enhances inhibitory synaptic transmission in rat substantia gelatinosa neurons.
    Liu T, Fujita T, Nakatsuka T, Kumamoto E.
    J Neurophysiol; 2008 Mar; 99(3):1274-84. PubMed ID: 18216222
    [Abstract] [Full Text] [Related]

  • 7. Chloride homeostasis differentially affects GABA(A) receptor- and glycine receptor-mediated effects on spontaneous circuit activity in hippocampal cell culture.
    Wang W, Xu TL.
    Neurosci Lett; 2006 Oct 02; 406(1-2):11-6. PubMed ID: 16905250
    [Abstract] [Full Text] [Related]

  • 8. Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABA A receptor alpha5 subunit-deficient mice.
    Glykys J, Mody I.
    J Neurophysiol; 2006 May 02; 95(5):2796-807. PubMed ID: 16452257
    [Abstract] [Full Text] [Related]

  • 9. Differential contribution of GABAergic and glycinergic components to inhibitory synaptic transmission in lamina II and laminae III-IV of the young rat spinal cord.
    Inquimbert P, Rodeau JL, Schlichter R.
    Eur J Neurosci; 2007 Nov 02; 26(10):2940-9. PubMed ID: 18001289
    [Abstract] [Full Text] [Related]

  • 10. Nitrous oxide and the inhibitory synaptic transmission in rat dorsal horn neurons.
    Georgiev SK, Baba H, Kohno T.
    Eur J Pain; 2010 Jan 02; 14(1):17-22. PubMed ID: 19261495
    [Abstract] [Full Text] [Related]

  • 11. Local oscillations of spiking activity in organotypic spinal cord slice cultures.
    Czarnecki A, Magloire V, Streit J.
    Eur J Neurosci; 2008 Apr 02; 27(8):2076-88. PubMed ID: 18412628
    [Abstract] [Full Text] [Related]

  • 12. Actions of propofol on substantia gelatinosa neurones in rat spinal cord revealed by in vitro and in vivo patch-clamp recordings.
    Takazawa T, Furue H, Nishikawa K, Uta D, Takeshima K, Goto F, Yoshimura M.
    Eur J Neurosci; 2009 Feb 02; 29(3):518-28. PubMed ID: 19222560
    [Abstract] [Full Text] [Related]

  • 13. Presynaptic angiotensin II AT1 receptors enhance inhibitory and excitatory synaptic neurotransmission to motoneurons and other ventral horn neurons in neonatal rat spinal cord.
    Oz M, Yang KH, O'donovan MJ, Renaud LP.
    J Neurophysiol; 2005 Aug 02; 94(2):1405-12. PubMed ID: 16061493
    [Abstract] [Full Text] [Related]

  • 14. ALX 1393 inhibits spontaneous network activity by inducing glycinergic tonic currents in the spinal ventral horn.
    Eckle VS, Antkowiak B.
    Neuroscience; 2013 Dec 03; 253():165-71. PubMed ID: 23994185
    [Abstract] [Full Text] [Related]

  • 15. Inhibitory synaptic transmission differs in mouse type A and B medial vestibular nucleus neurons in vitro.
    Camp AJ, Callister RJ, Brichta AM.
    J Neurophysiol; 2006 May 03; 95(5):3208-18. PubMed ID: 16407430
    [Abstract] [Full Text] [Related]

  • 16. Corelease of GABA/glycine in lamina-X of the spinal cord of neonatal rats.
    Seddik R, Schlichter R, Trouslard J.
    Neuroreport; 2007 Jul 02; 18(10):1025-9. PubMed ID: 17558289
    [Abstract] [Full Text] [Related]

  • 17. Mechanism of GABA receptor-mediated inhibition of spontaneous GABA release onto cerebellar Purkinje cells.
    Harvey VL, Stephens GJ.
    Eur J Neurosci; 2004 Aug 02; 20(3):684-700. PubMed ID: 15255979
    [Abstract] [Full Text] [Related]

  • 18. Cell type-specific GABA A receptor-mediated tonic inhibition in mouse neocortex.
    Vardya I, Drasbek KR, Dósa Z, Jensen K.
    J Neurophysiol; 2008 Jul 02; 100(1):526-32. PubMed ID: 18463187
    [Abstract] [Full Text] [Related]

  • 19. GABAergic tonic inhibition of substantia gelatinosa neurons in mouse spinal cord.
    Takahashi A, Mashimo T, Uchida I.
    Neuroreport; 2006 Aug 21; 17(12):1331-5. PubMed ID: 16951580
    [Abstract] [Full Text] [Related]

  • 20. GABAA receptor-mediated tonic currents in substantia gelatinosa neurons of rat spinal trigeminal nucleus pars caudalis.
    Han SM, Youn DH.
    Neurosci Lett; 2008 Aug 29; 441(3):296-301. PubMed ID: 18585436
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.