These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


616 related items for PubMed ID: 18625028

  • 1. The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p.
    Nisamedtinov I, Lindsey GG, Karreman R, Orumets K, Koplimaa M, Kevvai K, Paalme T.
    FEMS Yeast Res; 2008 Sep; 8(6):829-38. PubMed ID: 18625028
    [Abstract] [Full Text] [Related]

  • 2. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. A rapid method to determine the stress status of Saccharomyces cerevisiae by monitoring the expression of a Hsp12:green fluorescent protein (GFP) construct under the control of the Hsp12 promoter.
    Karreman RJ, Lindsey GG.
    J Biomol Screen; 2005 Apr; 10(3):253-9. PubMed ID: 15809321
    [Abstract] [Full Text] [Related]

  • 5. Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377.
    Kim IS, Moon HY, Yun HS, Jin I.
    J Microbiol; 2006 Oct; 44(5):492-501. PubMed ID: 17082742
    [Abstract] [Full Text] [Related]

  • 6. Growth characteristics of Saccharomyces cerevisiae S288C in changing environmental conditions: auxo-accelerostat study.
    Kasemets K, Nisamedtinov I, Laht TM, Abner K, Paalme T.
    Antonie Van Leeuwenhoek; 2007 Jul; 92(1):109-28. PubMed ID: 17268890
    [Abstract] [Full Text] [Related]

  • 7. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T, Nakakura Y, Yoshikawa K, Ashitani K, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296
    [Abstract] [Full Text] [Related]

  • 8. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.
    Kawahata M, Masaki K, Fujii T, Iefuji H.
    FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514
    [Abstract] [Full Text] [Related]

  • 9. Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae.
    Izawa S, Kita T, Ikeda K, Inoue Y.
    Biochem J; 2008 Aug 15; 414(1):111-9. PubMed ID: 18442359
    [Abstract] [Full Text] [Related]

  • 10. Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics.
    Ding MZ, Tian HC, Cheng JS, Yuan YJ.
    J Biotechnol; 2009 Dec 15; 144(4):279-86. PubMed ID: 19808067
    [Abstract] [Full Text] [Related]

  • 11. Modulation of Congo-red-induced aberrations in the yeast Saccharomyces cerevisiae by the general stress response protein Hsp12p.
    Karreman RJ, Lindsey GG.
    Can J Microbiol; 2007 Nov 15; 53(11):1203-10. PubMed ID: 18026214
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation.
    Verduyn C, Postma E, Scheffers WA, Van Dijken JP.
    Yeast; 1992 Jul 15; 8(7):501-17. PubMed ID: 1523884
    [Abstract] [Full Text] [Related]

  • 16. Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats.
    Mashego MR, Jansen ML, Vinke JL, van Gulik WM, Heijnen JJ.
    FEMS Yeast Res; 2005 Feb 15; 5(4-5):419-30. PubMed ID: 15691747
    [Abstract] [Full Text] [Related]

  • 17. Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast.
    Espinazo-Romeu M, Cantoral JM, Matallana E, Aranda A.
    FEMS Yeast Res; 2008 Nov 15; 8(7):1127-36. PubMed ID: 18554307
    [Abstract] [Full Text] [Related]

  • 18. HXT5 expression is determined by growth rates in Saccharomyces cerevisiae.
    Verwaal R, Paalman JW, Hogenkamp A, Verkleij AJ, Verrips CT, Boonstra J.
    Yeast; 2002 Sep 15; 19(12):1029-38. PubMed ID: 12210898
    [Abstract] [Full Text] [Related]

  • 19. Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift.
    Puig S, Pérez-Ortín JE.
    Yeast; 2000 Jan 30; 16(2):139-48. PubMed ID: 10641036
    [Abstract] [Full Text] [Related]

  • 20. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK, Wright PC.
    J Proteome Res; 2008 Nov 30; 7(11):4766-74. PubMed ID: 18808174
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.