These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


616 related items for PubMed ID: 18625028

  • 21. The role of the heat shock protein Hsp12p in the dynamic response of Saccharomyces cerevisiae to the addition of Congo red.
    Shamrock VJ, Duval JF, Lindsey GG, Gaboriaud F.
    FEMS Yeast Res; 2009 May; 9(3):391-9. PubMed ID: 19416105
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae.
    Roberts GG, Hudson AP.
    Yeast; 2009 Feb; 26(2):95-110. PubMed ID: 19235764
    [Abstract] [Full Text] [Related]

  • 24. Dynamic response of the expression of hxt1, hxt5 and hxt7 transport proteins in Saccharomyces cerevisiae to perturbations in the extracellular glucose concentration.
    Buziol S, Warth L, Magario I, Freund A, Siemann-Herzberg M, Reuss M.
    J Biotechnol; 2008 Apr 30; 134(3-4):203-10. PubMed ID: 18367282
    [Abstract] [Full Text] [Related]

  • 25. Ethanol stress stimulates the Ca2+-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae.
    Araki Y, Wu H, Kitagaki H, Akao T, Takagi H, Shimoi H.
    J Biosci Bioeng; 2009 Jan 30; 107(1):1-6. PubMed ID: 19147100
    [Abstract] [Full Text] [Related]

  • 26. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural.
    Lin FM, Tan Y, Yuan YJ.
    Proteomics; 2009 Dec 30; 9(24):5471-83. PubMed ID: 19834894
    [Abstract] [Full Text] [Related]

  • 27. Fermentative conditions modulating sweetness in dry wines: genetics and environmental factors influencing the expression level of the Saccharomyces cerevisiae HSP12 gene.
    Marchal A, Marullo P, Durand C, Moine V, Dubourdieu D.
    J Agric Food Chem; 2015 Jan 14; 63(1):304-11. PubMed ID: 25524156
    [Abstract] [Full Text] [Related]

  • 28. Activation of the protein kinase C1 pathway upon continuous heat stress in Saccharomyces cerevisiae is triggered by an intracellular increase in osmolarity due to trehalose accumulation.
    Mensonides FI, Brul S, Klis FM, Hellingwerf KJ, Teixeira de Mattos MJ.
    Appl Environ Microbiol; 2005 Aug 14; 71(8):4531-8. PubMed ID: 16085846
    [Abstract] [Full Text] [Related]

  • 29. Induction of baroresistance by hydrogen peroxide, ethanol and cold-shock in Saccharomyces cerevisiae.
    Palhano FL, Orlando MT, Fernandes PM.
    FEMS Microbiol Lett; 2004 Apr 01; 233(1):139-45. PubMed ID: 15043880
    [Abstract] [Full Text] [Related]

  • 30. A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress.
    Kim IS, Yun HS, Park IS, Sohn HY, Iwahashi H, Jin IN.
    J Biosci Bioeng; 2006 Oct 01; 102(4):288-96. PubMed ID: 17116574
    [Abstract] [Full Text] [Related]

  • 31. Response of Saccharomyces cerevisiae to ethanol stress involves actions of protein Asr1p.
    Ding J, Huang X, Zhao N, Gao F, Lu Q, Zhang KQ.
    J Microbiol Biotechnol; 2010 Dec 01; 20(12):1630-6. PubMed ID: 21193817
    [Abstract] [Full Text] [Related]

  • 32. Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts.
    Piddocke MP, Kreisz S, Heldt-Hansen HP, Nielsen KF, Olsson L.
    Appl Microbiol Biotechnol; 2009 Sep 01; 84(3):453-64. PubMed ID: 19343343
    [Abstract] [Full Text] [Related]

  • 33. Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaça: trehalose metabolism, heat and ethanol resistance.
    Vianna CR, Silva CL, Neves MJ, Rosa CA.
    Antonie Van Leeuwenhoek; 2008 Sep 01; 93(1-2):205-17. PubMed ID: 17701283
    [Abstract] [Full Text] [Related]

  • 34. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures.
    Aon MA, Cortassa S.
    Biotechnol Bioeng; 1998 Jul 20; 59(2):203-13. PubMed ID: 10099331
    [Abstract] [Full Text] [Related]

  • 35. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations.
    Devantier R, Scheithauer B, Villas-Bôas SG, Pedersen S, Olsson L.
    Biotechnol Bioeng; 2005 Jun 20; 90(6):703-14. PubMed ID: 15812801
    [Abstract] [Full Text] [Related]

  • 36. Stress response in yeast mRNA export factor: reversible changes in Rat8p localization are caused by ethanol stress but not heat shock.
    Takemura R, Inoue Y, Izawa S.
    J Cell Sci; 2004 Aug 15; 117(Pt 18):4189-97. PubMed ID: 15280434
    [Abstract] [Full Text] [Related]

  • 37. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae.
    Ma M, Liu ZL.
    Appl Microbiol Biotechnol; 2010 Jul 15; 87(3):829-45. PubMed ID: 20464391
    [Abstract] [Full Text] [Related]

  • 38. Heat stress-induced life span extension in yeast.
    Shama S, Lai CY, Antoniazzi JM, Jiang JC, Jazwinski SM.
    Exp Cell Res; 1998 Dec 15; 245(2):379-88. PubMed ID: 9851879
    [Abstract] [Full Text] [Related]

  • 39. Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains.
    Garay-Arroyo A, Covarrubias AA, Clark I, Niño I, Gosset G, Martinez A.
    Appl Microbiol Biotechnol; 2004 Feb 15; 63(6):734-41. PubMed ID: 12910327
    [Abstract] [Full Text] [Related]

  • 40. Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions.
    Moraitis C, Curran BP.
    Yeast; 2010 Feb 15; 27(2):103-14. PubMed ID: 20014153
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 31.