These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1068 related items for PubMed ID: 18632749
1. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis. Masso M, Vaisman II. Bioinformatics; 2008 Sep 15; 24(18):2002-9. PubMed ID: 18632749 [Abstract] [Full Text] [Related]
2. Accurate prediction of enzyme mutant activity based on a multibody statistical potential. Masso M, Vaisman II. Bioinformatics; 2007 Dec 01; 23(23):3155-61. PubMed ID: 17977887 [Abstract] [Full Text] [Related]
3. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers. Barenboim M, Masso M, Vaisman II, Jamison DC. Proteins; 2008 Jun 01; 71(4):1930-9. PubMed ID: 18186470 [Abstract] [Full Text] [Related]
4. A neural-network-based method for predicting protein stability changes upon single point mutations. Capriotti E, Fariselli P, Casadio R. Bioinformatics; 2004 Aug 04; 20 Suppl 1():i63-8. PubMed ID: 15262782 [Abstract] [Full Text] [Related]
5. Knowledge-based computational mutagenesis for predicting the disease potential of human non-synonymous single nucleotide polymorphisms. Masso M, Vaisman II. J Theor Biol; 2010 Oct 21; 266(4):560-8. PubMed ID: 20655929 [Abstract] [Full Text] [Related]
6. Prediction of protein mutant stability using classification and regression tool. Huang LT, Saraboji K, Ho SY, Hwang SF, Ponnuswamy MN, Gromiha MM. Biophys Chem; 2007 Feb 21; 125(2-3):462-70. PubMed ID: 17113702 [Abstract] [Full Text] [Related]
7. Predicting protein stability changes from sequences using support vector machines. Capriotti E, Fariselli P, Calabrese R, Casadio R. Bioinformatics; 2005 Sep 01; 21 Suppl 2():ii54-8. PubMed ID: 16204125 [Abstract] [Full Text] [Related]
9. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure. Song J, Yuan Z, Tan H, Huber T, Burrage K. Bioinformatics; 2007 Dec 01; 23(23):3147-54. PubMed ID: 17942444 [Abstract] [Full Text] [Related]
10. HYPROSP II--a knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence. Lin HN, Chang JM, Wu KP, Sung TY, Hsu WL. Bioinformatics; 2005 Aug 01; 21(15):3227-33. PubMed ID: 15932901 [Abstract] [Full Text] [Related]
11. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Dehouck Y, Grosfils A, Folch B, Gilis D, Bogaerts P, Rooman M. Bioinformatics; 2009 Oct 01; 25(19):2537-43. PubMed ID: 19654118 [Abstract] [Full Text] [Related]
12. Protein structure prediction based on sequence similarity. Jaroszewski L. Methods Mol Biol; 2009 Oct 01; 569():129-56. PubMed ID: 19623489 [Abstract] [Full Text] [Related]
13. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Fromer M, Yanover C. Proteins; 2009 May 15; 75(3):682-705. PubMed ID: 19003998 [Abstract] [Full Text] [Related]
14. Predicting protein secondary structure by a support vector machine based on a new coding scheme. Wang LH, Liu J, Li YF, Zhou HB. Genome Inform; 2004 May 15; 15(2):181-90. PubMed ID: 15706504 [Abstract] [Full Text] [Related]
15. Robust prediction of mutation-induced protein stability change by property encoding of amino acids. Kang S, Chen G, Xiao G. Protein Eng Des Sel; 2009 Feb 15; 22(2):75-83. PubMed ID: 19054789 [Abstract] [Full Text] [Related]
17. Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details. Potapov V, Cohen M, Schreiber G. Protein Eng Des Sel; 2009 Sep 15; 22(9):553-60. PubMed ID: 19561092 [Abstract] [Full Text] [Related]
19. Pairwise covariance adds little to secondary structure prediction but improves the prediction of non-canonical local structure. Bystroff C, Webb-Robertson BJ. BMC Bioinformatics; 2008 Oct 10; 9():429. PubMed ID: 18847485 [Abstract] [Full Text] [Related]
20. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions. Larson SM, Di Nardo AA, Davidson AR. J Mol Biol; 2000 Oct 27; 303(3):433-46. PubMed ID: 11031119 [Abstract] [Full Text] [Related] Page: [Next] [New Search]