These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


464 related items for PubMed ID: 18632883

  • 1. Heterogeneous neuronal responses to frequency-modulated tones in the primary auditory cortex of awake cats.
    Qin L, Wang J, Sato Y.
    J Neurophysiol; 2008 Sep; 100(3):1622-34. PubMed ID: 18632883
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Comparison between offset and onset responses of primary auditory cortex ON-OFF neurons in awake cats.
    Qin L, Chimoto S, Sakai M, Wang J, Sato Y.
    J Neurophysiol; 2007 May; 97(5):3421-31. PubMed ID: 17360820
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Selectivity for the rate of frequency-modulated sweeps in the mouse auditory cortex.
    Trujillo M, Measor K, Carrasco MM, Razak KA.
    J Neurophysiol; 2011 Dec; 106(6):2825-37. PubMed ID: 21849608
    [Abstract] [Full Text] [Related]

  • 7. Spectral-shape preference of primary auditory cortex neurons in awake cats.
    Qin L, Chimoto S, Sakai M, Sato Y.
    Brain Res; 2004 Oct 22; 1024(1-2):167-75. PubMed ID: 15451379
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Neuronal responses in chinchilla auditory cortex after postnatal exposure to frequency-modulated tones.
    Brown TA, Harrison RV.
    Hear Res; 2011 May 22; 275(1-2):8-16. PubMed ID: 21144889
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Cholinergic modulation of frequency receptive fields in auditory cortex: I. Frequency-specific effects of muscarinic agonists.
    McKenna TM, Ashe JH, Weinberger NM.
    Synapse; 1989 May 22; 4(1):30-43. PubMed ID: 2672402
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Balanced inhibition and excitation underlies spike firing regularity in ventral cochlear nucleus chopper neurons.
    Paolini AG, Clarey JC, Needham K, Clark GM.
    Eur J Neurosci; 2005 Mar 22; 21(5):1236-48. PubMed ID: 15813933
    [Abstract] [Full Text] [Related]

  • 17. Development of response selectivity in the mouse auditory cortex.
    Carrasco MM, Trujillo M, Razak K.
    Hear Res; 2013 Feb 22; 296():107-20. PubMed ID: 23261406
    [Abstract] [Full Text] [Related]

  • 18. Functional specialization in auditory cortex: responses to frequency-modulated stimuli in the cat's posterior auditory field.
    Heil P, Irvine DR.
    J Neurophysiol; 1998 Jun 22; 79(6):3041-59. PubMed ID: 9636107
    [Abstract] [Full Text] [Related]

  • 19. Perceptual organization of tone sequences in the auditory cortex of awake macaques.
    Micheyl C, Tian B, Carlyon RP, Rauschecker JP.
    Neuron; 2005 Oct 06; 48(1):139-48. PubMed ID: 16202714
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.