These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
134 related items for PubMed ID: 18640613
1. Transesterification by lipase entrapped in electrospun poly(vinyl alcohol) fibers and its application to a flow-through reactor. Sakai S, Antoku K, Yamaguchi T, Kawakami K. J Biosci Bioeng; 2008 Jun; 105(6):687-9. PubMed ID: 18640613 [Abstract] [Full Text] [Related]
2. Enhanced productivity of electrospun polyvinyl alcohol nanofibrous mats using aqueous N,N-dimethylformamide solution and their application to lipase-immobilizing membrane-shaped catalysts. Sawada K, Sakai S, Taya M. J Biosci Bioeng; 2012 Aug; 114(2):204-8. PubMed ID: 22595342 [Abstract] [Full Text] [Related]
3. Immobilization of Pseudomonas cepacia lipase onto electrospun polyacrylonitrile fibers through physical adsorption and application to transesterification in nonaqueous solvent. Sakai S, Liu Y, Yamaguchi T, Watanabe R, Kawabe M, Kawakami K. Biotechnol Lett; 2010 Aug; 32(8):1059-62. PubMed ID: 20424890 [Abstract] [Full Text] [Related]
4. Development of a silica monolith microbioreactor entrapping highly activated lipase and an experiment toward integration with chromatographic separation of chiral esters. Kawakami K, Abe D, Urakawa T, Kawashima A, Oda Y, Takahashi R, Sakai S. J Sep Sci; 2007 Nov; 30(17):3077-84. PubMed ID: 17924370 [Abstract] [Full Text] [Related]
6. Preparation of reusable bioreactors using reversible immobilization of enzyme on monolithic porous polymer support with attached gold nanoparticles. Lv Y, Lin Z, Tan T, Svec F. Biotechnol Bioeng; 2014 Jan; 111(1):50-8. PubMed ID: 23860941 [Abstract] [Full Text] [Related]
7. On-line low-volume transesterification-based assay for immobilized lipases. Urban PL, Goodall DM, Bergström ET, Bruce NC. J Biotechnol; 2006 Dec 01; 126(4):508-18. PubMed ID: 16793159 [Abstract] [Full Text] [Related]
8. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases. Sóti PL, Weiser D, Vigh T, Nagy ZK, Poppe L, Marosi G. Bioprocess Biosyst Eng; 2016 Mar 01; 39(3):449-59. PubMed ID: 26724947 [Abstract] [Full Text] [Related]
9. Immobilization of molecularly imprinted polymer nanoparticles in electrospun poly(vinyl alcohol) nanofibers. Piperno S, Tse Sum Bui B, Haupt K, Gheber LA. Langmuir; 2011 Mar 01; 27(5):1547-50. PubMed ID: 21222445 [Abstract] [Full Text] [Related]
10. Transesterification activity of a novel lipase from Acinetobacter venetianus RAG-1. Snellman EA, Colwell RR. Antonie Van Leeuwenhoek; 2008 Nov 01; 94(4):621-5. PubMed ID: 18720025 [Abstract] [Full Text] [Related]
11. Surface modified electrospun poly(vinyl alcohol) membranes for extracting nanoparticles from water. Mahanta N, Valiyaveettil S. Nanoscale; 2011 Nov 01; 3(11):4625-31. PubMed ID: 21904762 [Abstract] [Full Text] [Related]
12. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters. Urban J, Svec F, Fréchet JM. Biotechnol Bioeng; 2012 Feb 01; 109(2):371-80. PubMed ID: 21915852 [Abstract] [Full Text] [Related]
13. Enantioselective transesterification of glycidol catalysed by a novel lipase expressed from Bacillus subtilis. Wang L, Tai JD, Wang R, Xun EN, Wei XF, Wang L, Wang Z. Biotechnol Appl Biochem; 2010 May 10; 56(1):1-6. PubMed ID: 20397973 [Abstract] [Full Text] [Related]
14. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings. Batista KA, Lopes FM, Yamashita F, Fernandes KF. Mater Sci Eng C Mater Biol Appl; 2013 Apr 01; 33(3):1696-701. PubMed ID: 23827626 [Abstract] [Full Text] [Related]
15. Formation of pseudoisocyanine J-aggregates in poly(vinyl alcohol) fibers by electrospinning. Demir MM, Ozen B, Ozçelik S. J Phys Chem B; 2009 Aug 27; 113(34):11568-73. PubMed ID: 19845394 [Abstract] [Full Text] [Related]
16. Biodiesel fuel production by the transesterification reaction of soybean oil using immobilized lipase. Bernardes OL, Bevilaqua JV, Leal MC, Freire DM, Langone MA. Appl Biochem Biotechnol; 2007 Apr 27; 137-140(1-12):105-14. PubMed ID: 18478380 [Abstract] [Full Text] [Related]
17. Improvement of lipase biochemical properties via a two-step immobilization method: Adsorption onto silicon dioxide nanoparticles and entrapment in a polyvinyl alcohol/alginate hydrogel. Mohammadi NS, Khiabani MS, Ghanbarzadeh B, Mokarram RR. J Biotechnol; 2020 Nov 10; 323():189-202. PubMed ID: 32861701 [Abstract] [Full Text] [Related]
18. [Catalytic properties of lipase adsorbed on nanocarbon-containing mesoporous silica in esterification and transesterification reactions]. Kovalenko GA, Perminova LV, Chuenko TV, Rudina NA. Prikl Biokhim Mikrobiol; 2016 Nov 10; 52(6):570-8. PubMed ID: 29513475 [Abstract] [Full Text] [Related]
19. Adsorptive control of water in esterification with immobilized enzymes. Continuous operation in a periodic counter-current reactor. Mensah P, Carta G. Biotechnol Bioeng; 1999 Nov 10; 66(3):137-46. PubMed ID: 10577467 [Abstract] [Full Text] [Related]
20. Ester synthesis catalyzed by Mucor miehei lipase immobilized on magnetic polysiloxane-polyvinyl alcohol particles. Bruno LM, de Lima Filho JL, de M Melo EH, de Castro HF. Appl Biochem Biotechnol; 2004 Nov 10; 113-116():189-99. PubMed ID: 15054206 [Abstract] [Full Text] [Related] Page: [Next] [New Search]