These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
488 related items for PubMed ID: 18650089
21. Kinetic properties of Pelophylax esculentus muscle FBPase. Dziewulska-Szwajkowska D, Dzugaj A. Comp Biochem Physiol B Biochem Mol Biol; 2010 Nov; 157(3):294-300. PubMed ID: 20656052 [Abstract] [Full Text] [Related]
23. Structural and biochemical characterization of fructose-1,6/sedoheptulose-1,7-bisphosphatase from the cyanobacterium Synechocystis strain 6803. Feng L, Sun Y, Deng H, Li D, Wan J, Wang X, Wang W, Liao X, Ren Y, Hu X. FEBS J; 2014 Feb 07; 281(3):916-26. PubMed ID: 24286336 [Abstract] [Full Text] [Related]
24. MB06322 (CS-917): A potent and selective inhibitor of fructose 1,6-bisphosphatase for controlling gluconeogenesis in type 2 diabetes. Erion MD, van Poelje PD, Dang Q, Kasibhatla SR, Potter SC, Reddy MR, Reddy KR, Jiang T, Lipscomb WN. Proc Natl Acad Sci U S A; 2005 May 31; 102(22):7970-5. PubMed ID: 15911772 [Abstract] [Full Text] [Related]
25. Structure of E69Q mutant of human muscle fructose-1,6-bisphosphatase. Zarzycki M, Kołodziejczyk R, Maciaszczyk-Dziubinska E, Wysocki R, Jaskolski M, Dzugaj A. Acta Crystallogr D Biol Crystallogr; 2011 Dec 31; 67(Pt 12):1028-34. PubMed ID: 22120740 [Abstract] [Full Text] [Related]
26. Rational design, synthesis, and potency of N-substituted indoles, pyrroles, and triarylpyrazoles as potential fructose 1,6-bisphosphatase inhibitors. Rudnitskaya A, Borkin DA, Huynh K, Török B, Stieglitz K. ChemMedChem; 2010 Mar 01; 5(3):384-9. PubMed ID: 20069623 [Abstract] [Full Text] [Related]
27. Fructose-1, 6-bisphosphatase inhibitors for reducing excessive endogenous glucose production in type 2 diabetes. van Poelje PD, Potter SC, Erion MD. Handb Exp Pharmacol; 2011 Mar 01; (203):279-301. PubMed ID: 21484576 [Abstract] [Full Text] [Related]
28. Synthesis and structure-activity relationship of non-phosphorus-based fructose-1,6-bisphosphatase inhibitors: 2,5-Diphenyl-1,3,4-oxadiazoles. Liao BR, He HB, Yang LL, Gao LX, Chang L, Tang J, Li JY, Li J, Yang F. Eur J Med Chem; 2014 Aug 18; 83():15-25. PubMed ID: 24946215 [Abstract] [Full Text] [Related]
29. Evolutionary conserved N-terminal region of human muscle fructose 1,6-bisphosphatase regulates its activity and the interaction with aldolase. Gizak A, Maciaszczyk E, Dzugaj A, Eschrich K, Rakus D. Proteins; 2008 Jul 18; 72(1):209-16. PubMed ID: 18214967 [Abstract] [Full Text] [Related]
30. Toward a mechanism for the allosteric transition of pig kidney fructose-1,6-bisphosphatase. Zhang Y, Liang JY, Huang S, Lipscomb WN. J Mol Biol; 1994 Dec 16; 244(5):609-24. PubMed ID: 7990142 [Abstract] [Full Text] [Related]
31. The allosteric site of human liver fructose-1,6-bisphosphatase. Analysis of six AMP site mutants based on the crystal structure. Gidh-Jain M, Zhang Y, van Poelje PD, Liang JY, Huang S, Kim J, Elliott JT, Erion MD, Pilkis SJ, Raafat el-Maghrabi M. J Biol Chem; 1994 Nov 04; 269(44):27732-8. PubMed ID: 7961695 [Abstract] [Full Text] [Related]
32. Muscle aldolase decreases muscle FBPase sensitivity toward AMP inhibition. Rakus D, Dzugaj A. Biochem Biophys Res Commun; 2000 Aug 28; 275(2):611-6. PubMed ID: 10964712 [Abstract] [Full Text] [Related]
33. Kinetics and mechanisms of activation and inhibition of porcine liver fructose-1,6-bisphosphatase by monovalent cations. Zhang R, Villeret V, Lipscomb WN, Fromm HJ. Biochemistry; 1996 Mar 05; 35(9):3038-43. PubMed ID: 8608143 [Abstract] [Full Text] [Related]
34. Structure-based design and synthesis of novel dual-target inhibitors against cyanobacterial fructose-1,6-bisphosphate aldolase and fructose-1,6-bisphosphatase. Li D, Han X, Tu Q, Feng L, Wu D, Sun Y, Chen H, Li Y, Ren Y, Wan J. J Agric Food Chem; 2013 Aug 07; 61(31):7453-61. PubMed ID: 23889687 [Abstract] [Full Text] [Related]
35. Studies on the mechanism of adenosine 5'-monophosphate inhibition of bovine liver fructose 1,6-bisphosphatase. Stone SR, Fromm HJ. Biochemistry; 1980 Feb 19; 19(4):620-5. PubMed ID: 6243953 [Abstract] [Full Text] [Related]
36. Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach. Reddy MR, Erion MD. J Am Chem Soc; 2001 Jul 04; 123(26):6246-52. PubMed ID: 11427047 [Abstract] [Full Text] [Related]
37. Sulfonylureido thiazoles as fructose-1,6-bisphosphatase inhibitors for the treatment of type-2 diabetes. Kitas E, Mohr P, Kuhn B, Hebeisen P, Wessel HP, Haap W, Ruf A, Benz J, Joseph C, Huber W, Sanchez RA, Paehler A, Benardeau A, Gubler M, Schott B, Tozzo E. Bioorg Med Chem Lett; 2010 Jan 15; 20(2):594-9. PubMed ID: 19969452 [Abstract] [Full Text] [Related]
38. Discovery of N-Arylsulfonyl-Indole-2-Carboxamide Derivatives as Potent, Selective, and Orally Bioavailable Fructose-1,6-Bisphosphatase Inhibitors-Design, Synthesis, In Vivo Glucose Lowering Effects, and X-ray Crystal Complex Analysis. Zhou J, Bie J, Wang X, Liu Q, Li R, Chen H, Hu J, Cao H, Ji W, Li Y, Liu S, Shen Z, Xu B. J Med Chem; 2020 Sep 24; 63(18):10307-10329. PubMed ID: 32820629 [Abstract] [Full Text] [Related]
39. Localization of chicken muscle FBPase in cardiomyocyte nuclei. Zmojdzian M, Dziewulska-Szwajkowska D, Dzugaj A. Comp Biochem Physiol B Biochem Mol Biol; 2005 Jan 24; 140(1):37-43. PubMed ID: 15621507 [Abstract] [Full Text] [Related]
40. Discovery of novel allosteric site and covalent inhibitors of FBPase with potent hypoglycemic effects. Huang Y, Wei L, Han X, Chen H, Ren Y, Xu Y, Song R, Rao L, Su C, Peng C, Feng L, Wan J. Eur J Med Chem; 2019 Dec 15; 184():111749. PubMed ID: 31589992 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]