These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
242 related items for PubMed ID: 18650307
1. Interlimb coordination in rhythmic leg movements: spontaneous and training-induced manifestations in human infants. Musselman KE, Yang JF. J Neurophysiol; 2008 Oct; 100(4):2225-34. PubMed ID: 18650307 [Abstract] [Full Text] [Related]
2. Loading the limb during rhythmic leg movements lengthens the duration of both flexion and extension in human infants. Musselman KE, Yang JF. J Neurophysiol; 2007 Feb; 97(2):1247-57. PubMed ID: 17151226 [Abstract] [Full Text] [Related]
3. Kinematic analysis of kicking movements in preterm infants with very low birth weight and full-term infants. Jeng SF, Chen LC, Yau KI. Phys Ther; 2002 Feb; 82(2):148-59. PubMed ID: 11856066 [Abstract] [Full Text] [Related]
4. Interlimb influences on paretic leg function in poststroke hemiparesis. Kautz SA, Patten C. J Neurophysiol; 2005 May; 93(5):2460-73. PubMed ID: 15590727 [Abstract] [Full Text] [Related]
5. Adaptations in interlimb and intralimb coordination to asymmetrical loading in human walking. Haddad JM, van Emmerik RE, Whittlesey SN, Hamill J. Gait Posture; 2006 Jun; 23(4):429-34. PubMed ID: 16099160 [Abstract] [Full Text] [Related]
6. Modulations of interlimb and intralimb cutaneous reflexes during simultaneous arm and leg cycling in humans. Sakamoto M, Endoh T, Nakajima T, Tazoe T, Shiozawa S, Komiyama T. Clin Neurophysiol; 2006 Jun; 117(6):1301-11. PubMed ID: 16651023 [Abstract] [Full Text] [Related]
7. Kinematic and qualitative analysis of lower-extremity movements in preterm infants with brain lesions. van der Heide J, Paolicelli PB, Boldrini A, Cioni G. Phys Ther; 1999 Jun; 79(6):546-57. PubMed ID: 10372866 [Abstract] [Full Text] [Related]
8. Interlimb coordination following stroke. Garry MI, van Steenis RE, Summers JJ. Hum Mov Sci; 2005 Jun; 24(5-6):849-64. PubMed ID: 16343673 [Abstract] [Full Text] [Related]
9. Effects of interlimb and intralimb constraints on bimanual shoulder-elbow and shoulder-wrist coordination patterns. Li Y, Levin O, Forner-Cordero A, Swinnen SP. J Neurophysiol; 2005 Sep; 94(3):2139-49. PubMed ID: 15928058 [Abstract] [Full Text] [Related]
10. Shifting patterns of bilateral coordination and lateral dominance in the leg movements of young infants. Thelen E, Ridley-Johnson R, Fisher DM. Dev Psychobiol; 1983 Jan; 16(1):29-46. PubMed ID: 6825965 [Abstract] [Full Text] [Related]
11. Early spontaneous leg movements in infants born with and without myelomeningocele. Rademacher N, Black DP, Ulrich BD. Pediatr Phys Ther; 2008 Jan; 20(2):137-45. PubMed ID: 18480712 [Abstract] [Full Text] [Related]
13. Toy-oriented changes during early arm movements IV: shoulder-elbow coordination. Lee HM, Bhat A, Scholz JP, Galloway JC. Infant Behav Dev; 2008 Sep; 31(3):447-69. PubMed ID: 18316128 [Abstract] [Full Text] [Related]
14. Stability of gait and interlimb coordination in older adults. Krasovsky T, Baniña MC, Hacmon R, Feldman AG, Lamontagne A, Levin MF. J Neurophysiol; 2012 May; 107(9):2560-9. PubMed ID: 22298827 [Abstract] [Full Text] [Related]
15. Is dynamics the content of a generalized motor program for rhythmic interlimb coordination? Amazeen PG. J Mot Behav; 2002 Sep; 34(3):233-51. PubMed ID: 19260175 [Abstract] [Full Text] [Related]
16. Age-related differences in inhibitory processes during interlimb coordination. Fujiyama H, Garry MI, Levin O, Swinnen SP, Summers JJ. Brain Res; 2009 Mar 25; 1262():38-47. PubMed ID: 19368842 [Abstract] [Full Text] [Related]
17. Interlimb coupling strength scales with movement amplitude. Peper CL, de Boer BJ, de Poel HJ, Beek PJ. Neurosci Lett; 2008 May 23; 437(1):10-4. PubMed ID: 18423866 [Abstract] [Full Text] [Related]
18. Transfer of short-term motor learning across the lower limbs as a function of task conception and practice order. Stöckel T, Wang J. Brain Cogn; 2011 Nov 23; 77(2):271-9. PubMed ID: 21889250 [Abstract] [Full Text] [Related]
19. Tonic central and sensory stimuli facilitate involuntary air-stepping in humans. Selionov VA, Ivanenko YP, Solopova IA, Gurfinkel VS. J Neurophysiol; 2009 Jun 23; 101(6):2847-58. PubMed ID: 19339461 [Abstract] [Full Text] [Related]