These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
472 related items for PubMed ID: 18654522
1. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Eda G, Fanchini G, Chhowalla M. Nat Nanotechnol; 2008 May; 3(5):270-4. PubMed ID: 18654522 [Abstract] [Full Text] [Related]
4. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. ACS Nano; 2008 Mar; 2(3):463-70. PubMed ID: 19206571 [Abstract] [Full Text] [Related]
6. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Nat Nanotechnol; 2010 Aug; 5(8):574-8. PubMed ID: 20562870 [Abstract] [Full Text] [Related]
8. Graphene synthesis on cubic SiC/Si wafers. perspectives for mass production of graphene-based electronic devices. Aristov VY, Urbanik G, Kummer K, Vyalikh DV, Molodtsova OV, Preobrajenski AB, Zakharov AA, Hess C, Hänke T, Büchner B, Vobornik I, Fujii J, Panaccione G, Ossipyan YA, Knupfer M. Nano Lett; 2010 Mar 10; 10(3):992-5. PubMed ID: 20141155 [Abstract] [Full Text] [Related]
9. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA. Nat Nanotechnol; 2007 Apr 10; 2(4):230-6. PubMed ID: 18654268 [Abstract] [Full Text] [Related]
10. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS. Nano Lett; 2009 Dec 10; 9(12):4359-63. PubMed ID: 19845330 [Abstract] [Full Text] [Related]
11. Graphene nanoribbon thin films using layer-by-layer assembly. Zhu Y, Tour JM. Nano Lett; 2010 Nov 10; 10(11):4356-62. PubMed ID: 20949936 [Abstract] [Full Text] [Related]
12. Programmable direct-printing nanowire electronic components. Lee TI, Choi WJ, Moon KJ, Choi JH, Kar JP, Das SN, Kim YS, Baik HK, Myoung JM. Nano Lett; 2010 Mar 10; 10(3):1016-21. PubMed ID: 20108927 [Abstract] [Full Text] [Related]
15. Small-sized silicon nanoparticles: new nanolights and nanocatalysts. Kang Z, Liu Y, Lee ST. Nanoscale; 2011 Mar 10; 3(3):777-91. PubMed ID: 21161100 [Abstract] [Full Text] [Related]
16. Fully transparent thin-film transistor devices based on SnO2 nanowires. Dattoli EN, Wan Q, Guo W, Chen Y, Pan X, Lu W. Nano Lett; 2007 Aug 10; 7(8):2463-9. PubMed ID: 17595151 [Abstract] [Full Text] [Related]
17. Growth of semiconducting graphene on palladium. Kwon SY, Ciobanu CV, Petrova V, Shenoy VB, Bareño J, Gambin V, Petrov I, Kodambaka S. Nano Lett; 2009 Dec 10; 9(12):3985-90. PubMed ID: 19995079 [Abstract] [Full Text] [Related]
18. Selective atomic layer deposition of metal oxide thin films on patterned self-assembled monolayers formed by microcontact printing. Lee BH, Sung MM. J Nanosci Nanotechnol; 2007 Nov 10; 7(11):3758-64. PubMed ID: 18047053 [Abstract] [Full Text] [Related]
19. Large-yield preparation of high-electronic-quality graphene by a Langmuir-Schaefer approach. Gengler RY, Veligura A, Enotiadis A, Diamanti EK, Gournis D, Józsa C, van Wees BJ, Rudolf P. Small; 2010 Jan 10; 6(1):35-9. PubMed ID: 19937610 [No Abstract] [Full Text] [Related]
20. Nanocapacitive circuit elements. Zareie HM, Morgan SW, Moghaddam M, Maaroof AI, Cortie MB, Phillips MR. ACS Nano; 2008 Aug 10; 2(8):1615-9. PubMed ID: 19206363 [Abstract] [Full Text] [Related] Page: [Next] [New Search]