These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
252 related items for PubMed ID: 18655002
1. Enrichment of phosphopeptides using bare magnetic particles. Lee A, Yang HJ, Lim ES, Kim J, Kim Y. Rapid Commun Mass Spectrom; 2008 Aug; 22(16):2561-4. PubMed ID: 18655002 [Abstract] [Full Text] [Related]
2. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. Li Y, Xu X, Qi D, Deng C, Yang P, Zhang X. J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453 [Abstract] [Full Text] [Related]
3. Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. Li Y, Liu Y, Tang J, Lin H, Yao N, Shen X, Deng C, Yang P, Zhang X. J Chromatogr A; 2007 Nov 16; 1172(1):57-71. PubMed ID: 17936290 [Abstract] [Full Text] [Related]
4. Selective enrichment of phosphopeptides by titania nanoparticles coated magnetic carbon nanotubes. Yan Y, Zheng Z, Deng C, Zhang X, Yang P. Talanta; 2014 Jan 16; 118():14-20. PubMed ID: 24274265 [Abstract] [Full Text] [Related]
5. Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. Lo CY, Chen WY, Chen CT, Chen YC. J Proteome Res; 2007 Feb 16; 6(2):887-93. PubMed ID: 17269746 [Abstract] [Full Text] [Related]
6. Rapid enrichment and determination of phosphopeptides using bacterial magnetic particles via both strong and weak interactions. Huang J, Guo L, Zheng LM. Analyst; 2010 Mar 16; 135(3):559-63. PubMed ID: 20174710 [Abstract] [Full Text] [Related]
7. Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. Li Y, Leng T, Lin H, Deng C, Xu X, Yao N, Yang P, Zhang X. J Proteome Res; 2007 Nov 16; 6(11):4498-510. PubMed ID: 17900103 [Abstract] [Full Text] [Related]
8. Magnetic iron oxide nanoparticle enrichment of phosphopeptides on a radiate microstructure MALDI chip. Chen SY, Juang YM, Chien MW, Li KI, Yu CS, Lai CC. Analyst; 2011 Nov 07; 136(21):4454-9. PubMed ID: 21897971 [Abstract] [Full Text] [Related]
9. Development of core-shell structure Fe3O4@Ta2O5 microspheres for selective enrichment of phosphopeptides for mass spectrometry analysis. Qi D, Lu J, Deng C, Zhang X. J Chromatogr A; 2009 Jul 17; 1216(29):5533-9. PubMed ID: 19515374 [Abstract] [Full Text] [Related]
10. Specific enrichment and direct detection of phosphopeptides on insoluble transition metal oxide particles in matrix-assisted laser desorption/ionization mass spectrometry applications. Celikbiçak O, Kaynar G, Atakay M, Güler U, Kayili HM, Salih B. Eur J Mass Spectrom (Chichester); 2013 Jul 17; 19(3):151-62. PubMed ID: 24308196 [Abstract] [Full Text] [Related]
11. Selective separation and enrichment of peptides for MS analysis using the microspheres composed of Fe3O4@nSiO2 core and perpendicularly aligned mesoporous SiO2 shell. Chen H, Liu S, Yang H, Mao Y, Deng C, Zhang X, Yang P. Proteomics; 2010 Mar 17; 10(5):930-9. PubMed ID: 20127697 [Abstract] [Full Text] [Related]
12. Highly selective and rapid enrichment of phosphorylated peptides using gallium oxide-coated magnetic microspheres for MALDI-TOF-MS and nano-LC-ESI-MS/MS/MS analysis. Li Y, Lin H, Deng C, Yang P, Zhang X. Proteomics; 2008 Jan 17; 8(2):238-49. PubMed ID: 18081192 [Abstract] [Full Text] [Related]
13. Mesoporous TiO(2) nanocrystal clusters for selective enrichment of phosphopeptides. Lu Z, Duan J, He L, Hu Y, Yin Y. Anal Chem; 2010 Sep 01; 82(17):7249-58. PubMed ID: 20712324 [Abstract] [Full Text] [Related]
14. Use of polyethylenimine-modified magnetic nanoparticles for highly specific enrichment of phosphopeptides for mass spectrometric analysis. Chen CT, Wang LY, Ho YP. Anal Bioanal Chem; 2011 Mar 01; 399(8):2795-806. PubMed ID: 21249345 [Abstract] [Full Text] [Related]
15. Rapid enrichment of phosphopeptides and phosphoproteins from complex samples using magnetic particles coated with alumina as the concentrating probes for MALDI MS analysis. Chen CT, Chen WY, Tsai PJ, Chien KY, Yu JS, Chen YC. J Proteome Res; 2007 Jan 01; 6(1):316-25. PubMed ID: 17203975 [Abstract] [Full Text] [Related]
16. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Zhou H, Tian R, Ye M, Xu S, Feng S, Pan C, Jiang X, Li X, Zou H. Electrophoresis; 2007 Jul 01; 28(13):2201-15. PubMed ID: 17539039 [Abstract] [Full Text] [Related]
17. Cerium ion-chelated magnetic silica microspheres for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Li Y, Qi D, Deng C, Yang P, Zhang X. J Proteome Res; 2008 Apr 01; 7(4):1767-77. PubMed ID: 18307297 [Abstract] [Full Text] [Related]
18. Preparation of titanium-grafted magnetic mesoporous silica for the enrichment of endogenous serum phosphopeptides. Li XS, Pan YN, Zhao Y, Yuan BF, Guo L, Feng YQ. J Chromatogr A; 2013 Nov 08; 1315():61-9. PubMed ID: 24090595 [Abstract] [Full Text] [Related]
19. Design of Gd3+-immobilized two-dimensional magnetic magadiite nanosheets for highly selective enrichment of phosphopeptides. Jiang D, Lv S, Han X, Duan L, Liu J. Mikrochim Acta; 2021 Sep 08; 188(10):327. PubMed ID: 34494164 [Abstract] [Full Text] [Related]
20. An optimized magnetite microparticle-based phosphopeptide enrichment strategy for identifying multiple phosphorylation sites in an immunoprecipitated protein. Huang Y, Shi Q, Tsung CK, Gunawardena HP, Xie L, Yu Y, Liang H, Yang P, Stucky GD, Chen X. Anal Biochem; 2011 Jan 01; 408(1):19-31. PubMed ID: 20696126 [Abstract] [Full Text] [Related] Page: [Next] [New Search]