These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1199 related items for PubMed ID: 18657027

  • 1. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.
    Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, Ramakrishna S.
    Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering.
    Gupta D, Venugopal J, Prabhakaran MP, Dev VR, Low S, Choon AT, Ramakrishna S.
    Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270
    [Abstract] [Full Text] [Related]

  • 4. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y, Zhao Z, Zhao B, Qi HX, Peng J, Zhang L, Xu WJ, Hu P, Lu SB.
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [Abstract] [Full Text] [Related]

  • 5. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S.
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [Abstract] [Full Text] [Related]

  • 6. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering.
    Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S.
    Tissue Eng Part A; 2009 Nov; 15(11):3605-19. PubMed ID: 19496678
    [Abstract] [Full Text] [Related]

  • 7. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X.
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering.
    Prabhakaran MP, Venugopal J, Chan CK, Ramakrishna S.
    Nanotechnology; 2008 Nov 12; 19(45):455102. PubMed ID: 21832761
    [Abstract] [Full Text] [Related]

  • 10. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts.
    Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S.
    Biomacromolecules; 2005 Nov 12; 6(5):2583-9. PubMed ID: 16153095
    [Abstract] [Full Text] [Related]

  • 11. Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering.
    Du F, Wang H, Zhao W, Li D, Kong D, Yang J, Zhang Y.
    Biomaterials; 2012 Jan 12; 33(3):762-70. PubMed ID: 22056285
    [Abstract] [Full Text] [Related]

  • 12. Electrospun chitosan-alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds.
    Jeong SI, Krebs MD, Bonino CA, Samorezov JE, Khan SA, Alsberg E.
    Tissue Eng Part A; 2011 Jan 12; 17(1-2):59-70. PubMed ID: 20672984
    [Abstract] [Full Text] [Related]

  • 13. Cross-linking of gelatin and chitosan complex nanofibers for tissue-engineering scaffolds.
    Qian YF, Zhang KH, Chen F, Ke QF, Mo XM.
    J Biomater Sci Polym Ed; 2011 Jan 12; 22(8):1099-113. PubMed ID: 20615315
    [Abstract] [Full Text] [Related]

  • 14. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response.
    Thuaksuban N, Nuntanaranont T, Pattanachot W, Suttapreyasri S, Cheung LK.
    Biomed Mater; 2011 Feb 12; 6(1):015009. PubMed ID: 21205996
    [Abstract] [Full Text] [Related]

  • 15. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ, Oh SH, Liu J, Soker S, Atala A, Yoo JJ.
    Biomaterials; 2008 Apr 12; 29(10):1422-30. PubMed ID: 18096219
    [Abstract] [Full Text] [Related]

  • 16. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration.
    Chandrasekaran AR, Venugopal J, Sundarrajan S, Ramakrishna S.
    Biomed Mater; 2011 Feb 12; 6(1):015001. PubMed ID: 21205999
    [Abstract] [Full Text] [Related]

  • 17. Tissue engineered plant extracts as nanofibrous wound dressing.
    Jin G, Prabhakaran MP, Kai D, Annamalai SK, Arunachalam KD, Ramakrishna S.
    Biomaterials; 2013 Jan 12; 34(3):724-34. PubMed ID: 23111334
    [Abstract] [Full Text] [Related]

  • 18. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators.
    Binulal NS, Deepthy M, Selvamurugan N, Shalumon KT, Suja S, Mony U, Jayakumar R, Nair SV.
    Tissue Eng Part A; 2010 Feb 12; 16(2):393-404. PubMed ID: 19772455
    [Abstract] [Full Text] [Related]

  • 19. Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering.
    Saderi N, Rajabi M, Akbari B, Firouzi M, Hassannejad Z.
    J Mater Sci Mater Med; 2018 Aug 17; 29(9):134. PubMed ID: 30120577
    [Abstract] [Full Text] [Related]

  • 20. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J, Yu X.
    Acta Biomater; 2010 Aug 17; 6(8):3004-12. PubMed ID: 20144749
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 60.