These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
221 related items for PubMed ID: 18663432
1. Acetylcholinesterase-based biosensors for quantification of carbofuran, carbaryl, methylparaoxon, and dichlorvos in 5% acetonitrile. Valdés-Ramírez G, Cortina M, Ramírez-Silva MT, Marty JL. Anal Bioanal Chem; 2008 Oct; 392(4):699-707. PubMed ID: 18663432 [Abstract] [Full Text] [Related]
2. Automated resolution of dichlorvos and methylparaoxon pesticide mixtures employing a Flow Injection system with an inhibition electronic tongue. Valdés-Ramírez G, Gutiérrez M, Del Valle M, Ramírez-Silva MT, Fournier D, Marty JL. Biosens Bioelectron; 2009 Jan 01; 24(5):1103-8. PubMed ID: 18644713 [Abstract] [Full Text] [Related]
3. Sensitive amperometric biosensor for dichlorovos quantification: Application to detection of residues on apple skin. Valdés-Ramírez G, Fournier D, Ramírez-Silva MT, Marty JL. Talanta; 2008 Jan 15; 74(4):741-6. PubMed ID: 18371703 [Abstract] [Full Text] [Related]
4. A novel automated flow-based biosensor for the determination of organophosphate pesticides in milk. Mishra RK, Dominguez RB, Bhand S, Muñoz R, Marty JL. Biosens Bioelectron; 2012 Feb 15; 32(1):56-61. PubMed ID: 22221795 [Abstract] [Full Text] [Related]
5. Genetically engineered acetylcholinesterase-based biosensor for attomolar detection of dichlorvos. Sotiropoulou S, Fournier D, Chaniotakis NA. Biosens Bioelectron; 2005 May 15; 20(11):2347-52. PubMed ID: 15797338 [Abstract] [Full Text] [Related]
6. An acetylcholinesterase biosensor for determination of low concentrations of Paraoxon and Dichlorvos. Di Tuoro D, Portaccio M, Lepore M, Arduini F, Moscone D, Bencivenga U, Mita DG. N Biotechnol; 2011 Dec 15; 29(1):132-8. PubMed ID: 21600321 [Abstract] [Full Text] [Related]
7. Disposable screen-printed electrode coupled with recombinant Drosophila melanogaster acetylcholinesterase and multiwalled carbon nanotubes for rapid detection of pesticides. Tang Z, Chen H, Song S, Fan C, Zhang D, Wu A. J AOAC Int; 2011 Dec 15; 94(1):307-12. PubMed ID: 21391508 [Abstract] [Full Text] [Related]
8. Improved multianalyte detection of organophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural networks. Bachmann TT, Leca B, Vilatte F, Marty JL, Fournier D, Schmid RD. Biosens Bioelectron; 2000 Jun 15; 15(3-4):193-201. PubMed ID: 11286337 [Abstract] [Full Text] [Related]
9. An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides. Warner J, Andreescu S. Talanta; 2016 Jun 15; 146():279-84. PubMed ID: 26695264 [Abstract] [Full Text] [Related]
10. Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene. Shamagsumova RV, Shurpik DN, Padnya PL, Stoikov II, Evtugyn GA. Talanta; 2015 Nov 01; 144():559-68. PubMed ID: 26452862 [Abstract] [Full Text] [Related]
11. Pesticide detection with a liposome-based nano-biosensor. Vamvakaki V, Chaniotakis NA. Biosens Bioelectron; 2007 Jun 15; 22(12):2848-53. PubMed ID: 17223333 [Abstract] [Full Text] [Related]
12. Acetylcholinesterase biosensor based on SnO2 nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides. Zhou Q, Yang L, Wang G, Yang Y. Biosens Bioelectron; 2013 Nov 15; 49():25-31. PubMed ID: 23708814 [Abstract] [Full Text] [Related]
13. Comparative investigation between acetylcholinesterase obtained from commercial sources and genetically modified Drosophila melanogaster: application in amperometric biosensors for methamidophos pesticide detection. de Oliveira Marques PR, Nunes GS, dos Santos TC, Andreescu S, Marty JL. Biosens Bioelectron; 2004 Nov 01; 20(4):825-32. PubMed ID: 15522598 [Abstract] [Full Text] [Related]
15. Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development. Talarico D, Arduini F, Amine A, Cacciotti I, Moscone D, Palleschi G. Anal Bioanal Chem; 2016 Oct 15; 408(26):7299-309. PubMed ID: 27251198 [Abstract] [Full Text] [Related]
16. Rapid colorimetric determination of the pesticides carbofuran and dichlorvos by exploiting their inhibitory effect on the aggregation of peroxidase-mimicking platinum nanoparticles. Cao J, Wang M, She Y, Abd El-Aty AM, Hacımüftüoğlu A, Wang J, Yan M, Hong S, Lao S, Wang Y. Mikrochim Acta; 2019 May 31; 186(6):390. PubMed ID: 31152243 [Abstract] [Full Text] [Related]
17. Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Yu G, Wu W, Zhao Q, Wei X, Lu Q. Biosens Bioelectron; 2015 Jun 15; 68():288-294. PubMed ID: 25594160 [Abstract] [Full Text] [Related]
18. A novel amperometric biosensor based on single walled carbon nanotubes with acetylcholine esterase for the detection of carbaryl pesticide in water. Firdoz S, Ma F, Yue X, Dai Z, Kumar A, Jiang B. Talanta; 2010 Nov 15; 83(1):269-73. PubMed ID: 21035674 [Abstract] [Full Text] [Related]
19. Nanostructured photoelectrochemical biosensor for highly sensitive detection of organophosphorous pesticides. Li X, Zheng Z, Liu X, Zhao S, Liu S. Biosens Bioelectron; 2015 Feb 15; 64():1-5. PubMed ID: 25173731 [Abstract] [Full Text] [Related]
20. Biosensor based on acetylcholinesterase immobilized onto layered double hydroxides for flow injection/amperometric detection of organophosphate pesticides. Gong J, Guan Z, Song D. Biosens Bioelectron; 2013 Jan 15; 39(1):320-3. PubMed ID: 22868055 [Abstract] [Full Text] [Related] Page: [Next] [New Search]