These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


356 related items for PubMed ID: 18663454

  • 1. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude.
    Hiryu S, Shiori Y, Hosokawa T, Riquimaroux H, Watanabe Y.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):841-51. PubMed ID: 18663454
    [Abstract] [Full Text] [Related]

  • 2. Echolocation behavior of the Japanese horseshoe bat in pursuit of fluttering prey.
    Mantani S, Hiryu S, Fujioka E, Matsuta N, Riquimaroux H, Watanabe Y.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Oct; 198(10):741-51. PubMed ID: 22777677
    [Abstract] [Full Text] [Related]

  • 3. Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone.
    Hiryu S, Hagino T, Riquimaroux H, Watanabe Y.
    J Acoust Soc Am; 2007 Mar; 121(3):1749-57. PubMed ID: 17407911
    [Abstract] [Full Text] [Related]

  • 4. Pulse-echo interaction in free-flying horseshoe bats, Rhinolophus ferrumequinum nippon.
    Shiori Y, Hiryu S, Watanabe Y, Riquimaroux H, Watanabe Y.
    J Acoust Soc Am; 2009 Sep; 126(3):EL80-5. PubMed ID: 19739702
    [Abstract] [Full Text] [Related]

  • 5. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency.
    Metzner W, Zhang S, Smotherman M.
    J Exp Biol; 2002 Jun; 205(Pt 11):1607-16. PubMed ID: 12000805
    [Abstract] [Full Text] [Related]

  • 6. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight.
    Hiryu S, Katsura K, Lin LK, Riquimaroux H, Watanabe Y.
    J Acoust Soc Am; 2005 Dec; 118(6):3927-33. PubMed ID: 16419835
    [Abstract] [Full Text] [Related]

  • 7. Convergence of reference frequencies by multiple CF-FM bats (Rhinolophus ferrumequinum nippon) during paired flights evaluated with onboard microphones.
    Furusawa Y, Hiryu S, Kobayasi KI, Riquimaroux H.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Sep; 198(9):683-93. PubMed ID: 22717760
    [Abstract] [Full Text] [Related]

  • 8. Adaptive behavior for texture discrimination by the free-flying big brown bat, Eptesicus fuscus.
    Falk B, Williams T, Aytekin M, Moss CF.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):491-503. PubMed ID: 21246202
    [Abstract] [Full Text] [Related]

  • 9. Automatic gain control in the bat's sonar receiver and the neuroethology of echolocation.
    Kick SA, Simmons JA.
    J Neurosci; 1984 Nov; 4(11):2725-37. PubMed ID: 6502201
    [Abstract] [Full Text] [Related]

  • 10. FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter.
    Hiryu S, Bates ME, Simmons JA, Riquimaroux H.
    Proc Natl Acad Sci U S A; 2010 Apr 13; 107(15):7048-53. PubMed ID: 20351291
    [Abstract] [Full Text] [Related]

  • 11. An audio-vocal interface in echolocating horseshoe bats.
    Metzner W.
    J Neurosci; 1993 May 13; 13(5):1899-915. PubMed ID: 8478683
    [Abstract] [Full Text] [Related]

  • 12. On-board recordings reveal no jamming avoidance in wild bats.
    Cvikel N, Levin E, Hurme E, Borissov I, Boonman A, Amichai E, Yovel Y.
    Proc Biol Sci; 2015 Jan 07; 282(1798):20142274. PubMed ID: 25429017
    [Abstract] [Full Text] [Related]

  • 13. Echo-acoustic flow shapes object representation in spatially complex acoustic scenes.
    Greiter W, Firzlaff U.
    J Neurophysiol; 2017 Jun 01; 117(6):2113-2124. PubMed ID: 28275060
    [Abstract] [Full Text] [Related]

  • 14. Echolocating bats rely on audiovocal feedback to adapt sonar signal design.
    Luo J, Moss CF.
    Proc Natl Acad Sci U S A; 2017 Oct 10; 114(41):10978-10983. PubMed ID: 28973851
    [Abstract] [Full Text] [Related]

  • 15. Prey pursuit strategy of Japanese horseshoe bats during an in-flight target-selection task.
    Kinoshita Y, Ogata D, Watanabe Y, Riquimaroux H, Ohta T, Hiryu S.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Sep 10; 200(9):799-809. PubMed ID: 24958227
    [Abstract] [Full Text] [Related]

  • 16. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight.
    Matsuta N, Hiryu S, Fujioka E, Yamada Y, Riquimaroux H, Watanabe Y.
    J Exp Biol; 2013 Apr 01; 216(Pt 7):1210-8. PubMed ID: 23487269
    [Abstract] [Full Text] [Related]

  • 17. Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals.
    Schnitzler HU, Denzinger A.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May 01; 197(5):541-59. PubMed ID: 20857119
    [Abstract] [Full Text] [Related]

  • 18. Auditory-feedback control of temporal call patterns in echolocating horseshoe bats.
    Smotherman M, Metzner W.
    J Neurophysiol; 2005 Mar 01; 93(3):1295-303. PubMed ID: 15496485
    [Abstract] [Full Text] [Related]

  • 19. Effects of echo intensity on Doppler-shift compensation behavior in horseshoe bats.
    Smotherman M, Metzner W.
    J Neurophysiol; 2003 Feb 01; 89(2):814-21. PubMed ID: 12574459
    [Abstract] [Full Text] [Related]

  • 20. Rapid frequency control of sonar sounds by the FM bat, Miniopterus fuliginosus, in response to spectral overlap.
    Hase K, Miyamoto T, Kobayasi KI, Hiryu S.
    Behav Processes; 2016 Jul 01; 128():126-33. PubMed ID: 27157002
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.