These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
301 related items for PubMed ID: 1866750
21. Nitric oxide donors increase blood flow and reduce brain damage in focal ischemia: evidence that nitric oxide is beneficial in the early stages of cerebral ischemia. Zhang F, White JG, Iadecola C. J Cereb Blood Flow Metab; 1994 Mar; 14(2):217-26. PubMed ID: 8113318 [Abstract] [Full Text] [Related]
22. Temporal thresholds of reperfusion in the middle cerebral artery occlusion model in rats. Katsumata T, Katayama Y, Terashi A. Jpn Circ J; 1995 Feb; 59(2):112-20. PubMed ID: 7596023 [Abstract] [Full Text] [Related]
23. Polymorphonuclear leukocyte infiltration into cerebral focal ischemic tissue: myeloperoxidase activity assay and histologic verification. Barone FC, Hillegass LM, Price WJ, White RF, Lee EV, Feuerstein GZ, Sarau HM, Clark RK, Griswold DE. J Neurosci Res; 1991 Jul; 29(3):336-45. PubMed ID: 1656059 [Abstract] [Full Text] [Related]
24. Threshold of calcium disturbances after focal cerebral ischemia in rats. Implications of the window of therapeutic opportunity. DeGraba TJ, Ostrow PT, Grotta JC. Stroke; 1993 Aug; 24(8):1212-6; discussion 1216-7. PubMed ID: 7688156 [Abstract] [Full Text] [Related]
25. Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Nagasawa H, Kogure K. Stroke; 1989 Aug; 20(8):1037-43. PubMed ID: 2756535 [Abstract] [Full Text] [Related]
26. [The influence of induced hypertension in acute phase on focal cerebral ischemia injury]. Jia JP, Jiao LD, Zhou JY, Zhao HB. Zhonghua Yi Xue Za Zhi; 2005 Jul 13; 85(26):1813-5. PubMed ID: 16253184 [Abstract] [Full Text] [Related]
27. A reproducible model of reversible, focal, neocortical ischemia in Sprague-Dawley rat. Hiramatsu K, Kassell NF, Goto Y, Soleau S, Lee KS. Acta Neurochir (Wien); 1993 Jul 13; 120(1-2):66-71. PubMed ID: 8434519 [Abstract] [Full Text] [Related]
28. L-arginine infusion promotes nitric oxide-dependent vasodilation, increases regional cerebral blood flow, and reduces infarction volume in the rat. Morikawa E, Moskowitz MA, Huang Z, Yoshida T, Irikura K, Dalkara T. Stroke; 1994 Feb 13; 25(2):429-35. PubMed ID: 7508154 [Abstract] [Full Text] [Related]
29. Infarct tolerance against temporary focal ischemia following spreading depression in rat brain. Yanamoto H, Hashimoto N, Nagata I, Kikuchi H. Brain Res; 1998 Feb 16; 784(1-2):239-49. PubMed ID: 9518633 [Abstract] [Full Text] [Related]
30. Endovascular suture occlusion of the middle cerebral artery in rats: effect of suture insertion distance on cerebral blood flow, infarct distribution and infarct volume. Zarow GJ, Karibe H, States BA, Graham SH, Weinstein PR. Neurol Res; 1997 Aug 16; 19(4):409-16. PubMed ID: 9263222 [Abstract] [Full Text] [Related]
31. Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Memezawa H, Smith ML, Siesjö BK. Stroke; 1992 Apr 16; 23(4):552-9. PubMed ID: 1561688 [Abstract] [Full Text] [Related]
32. Effects of the calcium antagonist nilvadipine on focal cerebral ischemia in spontaneously hypertensive rats. Shiino A, Matsuda M, Susumu T, Handa J. Surg Neurol; 1991 Feb 16; 35(2):105-10. PubMed ID: 1990476 [Abstract] [Full Text] [Related]
33. Cortical infarct volume is dependent on the ischemic reduction of perifocal cerebral blood flow in a three-vessel intraluminal MCA occlusion/reperfusion model in the rat. Soriano MA, Sanz O, Ferrer I, Planas AM. Brain Res; 1997 Feb 07; 747(2):273-8. PubMed ID: 9046002 [Abstract] [Full Text] [Related]
34. Use of mild intraischemic hypothermia versus mannitol to reduce infarct size after temporary middle cerebral artery occlusion in rats. Karibe H, Zarow GJ, Weinstein PR. J Neurosurg; 1995 Jul 07; 83(1):93-8. PubMed ID: 7782857 [Abstract] [Full Text] [Related]
35. A rat model of focal embolic cerebral ischemia. Zhang RL, Chopp M, Zhang ZG, Jiang Q, Ewing JR. Brain Res; 1997 Aug 22; 766(1-2):83-92. PubMed ID: 9359590 [Abstract] [Full Text] [Related]
36. Chronic parasympathetic sectioning decreases regional cerebral blood flow during hemorrhagic hypotension and increases infarct size after middle cerebral artery occlusion in spontaneously hypertensive rats. Koketsu N, Moskowitz MA, Kontos HA, Yokota M, Shimizu T. J Cereb Blood Flow Metab; 1992 Jul 22; 12(4):613-20. PubMed ID: 1618940 [Abstract] [Full Text] [Related]
37. Effects of intraischemic hypothermia on cerebral damage in a model of reversible focal ischemia. Goto Y, Kassell NF, Hiramatsu K, Soleau SW, Lee KS. Neurosurgery; 1993 Jun 22; 32(6):980-4; discussion 984-5. PubMed ID: 8327102 [Abstract] [Full Text] [Related]
38. Prolonged mild hypothermia therapy protects the brain against permanent focal ischemia. Yanamoto H, Nagata I, Niitsu Y, Zhang Z, Xue JH, Sakai N, Kikuchi H. Stroke; 2001 Jan 22; 32(1):232-9. PubMed ID: 11136942 [Abstract] [Full Text] [Related]
39. Inhibition of Na+/H+ exchanger reduces infarct volume of focal cerebral ischemia in rats. Kitayama J, Kitazono T, Yao H, Ooboshi H, Takaba H, Ago T, Fujishima M, Ibayashi S. Brain Res; 2001 Dec 20; 922(2):223-8. PubMed ID: 11743953 [Abstract] [Full Text] [Related]
40. Ischemic cortical lesions after permanent occlusion of individual middle cerebral artery branches in rats. Rubino GJ, Young W. Stroke; 1988 Jul 20; 19(7):870-7. PubMed ID: 2455367 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]