These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
295 related items for PubMed ID: 18671860
1. Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1. Bonander N, Ferndahl C, Mostad P, Wilks MD, Chang C, Showe L, Gustafsson L, Larsson C, Bill RM. BMC Genomics; 2008 Jul 31; 9():365. PubMed ID: 18671860 [Abstract] [Full Text] [Related]
3. GSM1 Requires Hap4 for Expression and Plays a Role in Gluconeogenesis and Utilization of Nonfermentable Carbon Sources. Bhondeley M, Liu Z. Genes (Basel); 2024 Aug 27; 15(9):. PubMed ID: 39336719 [Abstract] [Full Text] [Related]
4. Roles of cis- and trans-changes in the regulatory evolution of genes in the gluconeogenic pathway in yeast. Chang YW, Robert Liu FG, Yu N, Sung HM, Yang P, Wang D, Huang CJ, Shih MC, Li WH. Mol Biol Evol; 2008 Sep 27; 25(9):1863-75. PubMed ID: 18573843 [Abstract] [Full Text] [Related]
5. Multiple defects in the respiratory chain lead to the repression of genes encoding components of the respiratory chain and TCA cycle enzymes. Bourges I, Mucchielli MH, Herbert CJ, Guiard B, Dujardin G, Meunier B. J Mol Biol; 2009 Apr 17; 387(5):1081-91. PubMed ID: 19245817 [Abstract] [Full Text] [Related]
6. Overexpression of HAP4 in glucose-derepressed yeast cells reveals respiratory control of glucose-regulated genes. Lascaris R, Piwowarski J, van der Spek H, de Mattos JT, Grivell L, Blom J. Microbiology (Reading); 2004 Apr 17; 150(Pt 4):929-934. PubMed ID: 15073302 [Abstract] [Full Text] [Related]
7. Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. Westholm JO, Nordberg N, Murén E, Ameur A, Komorowski J, Ronne H. BMC Genomics; 2008 Dec 16; 9():601. PubMed ID: 19087243 [Abstract] [Full Text] [Related]
8. Two homologs of the Cat8 transcription factor are involved in the regulation of ethanol utilization in Komagataella phaffii. Barbay D, Mačáková M, Sützl L, De S, Mattanovich D, Gasser B. Curr Genet; 2021 Aug 16; 67(4):641-661. PubMed ID: 33725138 [Abstract] [Full Text] [Related]
9. Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site. Wu J, Trumbly RJ. Yeast; 1998 Aug 16; 14(11):985-1000. PubMed ID: 9730278 [Abstract] [Full Text] [Related]
10. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae. Sasaki H, Uemura H. Yeast; 2005 Jan 30; 22(2):111-27. PubMed ID: 15645478 [Abstract] [Full Text] [Related]
11. Positive regulation of the LPD1 gene of Saccharomyces cerevisiae by the HAP2/HAP3/HAP4 activation system. Bowman SB, Zaman Z, Collinson LP, Brown AJ, Dawes IW. Mol Gen Genet; 1992 Jan 30; 231(2):296-303. PubMed ID: 1310523 [Abstract] [Full Text] [Related]
12. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae. Zaragoza O, Vincent O, Gancedo JM. Biochem J; 2001 Oct 01; 359(Pt 1):193-201. PubMed ID: 11563983 [Abstract] [Full Text] [Related]
13. Shifting the fermentative/oxidative balance in Saccharomyces cerevisiae by transcriptional deregulation of Snf1 via overexpression of the upstream activating kinase Sak1p. Raab AM, Hlavacek V, Bolotina N, Lang C. Appl Environ Microbiol; 2011 Mar 01; 77(6):1981-9. PubMed ID: 21257817 [Abstract] [Full Text] [Related]
14. The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. Haurie V, Perrot M, Mini T, Jenö P, Sagliocco F, Boucherie H. J Biol Chem; 2001 Jan 05; 276(1):76-85. PubMed ID: 11024040 [Abstract] [Full Text] [Related]
15. Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae. Watanabe D, Hashimoto N, Mizuno M, Zhou Y, Akao T, Shimoi H. Biosci Biotechnol Biochem; 2013 Jan 05; 77(11):2255-62. PubMed ID: 24200791 [Abstract] [Full Text] [Related]
16. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Hedges D, Proft M, Entian KD. Mol Cell Biol; 1995 Apr 05; 15(4):1915-22. PubMed ID: 7891685 [Abstract] [Full Text] [Related]
17. Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8. Tachibana C, Yoo JY, Tagne JB, Kacherovsky N, Lee TI, Young ET. Mol Cell Biol; 2005 Mar 05; 25(6):2138-46. PubMed ID: 15743812 [Abstract] [Full Text] [Related]
18. Effect of hxk2 deletion and HAP4 overexpression on fermentative capacity in Saccharomyces cerevisiae. Schuurmans JM, Rossell SL, van Tuijl A, Bakker BM, Hellingwerf KJ, Teixeira de Mattos MJ. FEMS Yeast Res; 2008 Mar 05; 8(2):195-203. PubMed ID: 18179578 [Abstract] [Full Text] [Related]
19. MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae. Hu Z, Nehlin JO, Ronne H, Michels CA. Curr Genet; 1995 Aug 05; 28(3):258-66. PubMed ID: 8529272 [Abstract] [Full Text] [Related]
20. Regulation of Cat8 in energy metabolic balance and glucose tolerance in Saccharomyces cerevisiae. Deng H, Du Z, Lu S, Wang Z, He X. Appl Microbiol Biotechnol; 2023 Jul 05; 107(14):4605-4619. PubMed ID: 37249587 [Abstract] [Full Text] [Related] Page: [Next] [New Search]