These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
292 related items for PubMed ID: 18677942
1. [Event-related potentials in different stages of the operation of visual working memory]. Beteleva TG, Sinitsyn SV. Fiziol Cheloveka; 2008; 34(3):5-15. PubMed ID: 18677942 [No Abstract] [Full Text] [Related]
2. Working memory load improves early stages of independent visual processing. Cocchi L, Toepel U, De Lucia M, Martuzzi R, Wood SJ, Carter O, Murray MM. Neuropsychologia; 2011 Jan; 49(1):92-102. PubMed ID: 20974157 [Abstract] [Full Text] [Related]
3. ERP measures indicate both attention and working memory encoding decrements in aging. Finnigan S, O'Connell RG, Cummins TD, Broughton M, Robertson IH. Psychophysiology; 2011 May; 48(5):601-11. PubMed ID: 21039584 [Abstract] [Full Text] [Related]
6. Age differences in target detection and interference resolution in working memory: an event-related potential study. Tays WJ, Dywan J, Mathewson KJ, Segalowitz SJ. J Cogn Neurosci; 2008 Dec; 20(12):2250-62. PubMed ID: 18457511 [Abstract] [Full Text] [Related]
7. Spatio-temporal dynamics of visual selective attention identified by a common spatial pattern decomposition method. Li L, Yao D, Yin G. Brain Res; 2009 Jul 28; 1282():84-94. PubMed ID: 19501069 [Abstract] [Full Text] [Related]
8. Working memory in children with epilepsy: an event-related potentials study. Myatchin I, Mennes M, Wouters H, Stiers P, Lagae L. Epilepsy Res; 2009 Oct 28; 86(2-3):183-90. PubMed ID: 19615862 [Abstract] [Full Text] [Related]
9. The impact of prefrontal cortex for selective attention in a visual working memory task. Schreppel TJ, Pauli P, Ellgring H, Fallgatter AJ, Herrmann MJ. Int J Neurosci; 2008 Dec 28; 118(12):1673-88. PubMed ID: 18937114 [Abstract] [Full Text] [Related]
10. Short-term consolidation of visual patterns interferes with visuo-spatial attention: converging evidence from human electrophysiology. Robitaille N, Jolicoeur P, Dell'Acqua R, Sessa P. Brain Res; 2007 Dec 14; 1185():158-69. PubMed ID: 17936730 [Abstract] [Full Text] [Related]
14. Electrophysiological evidence for independent consolidation of multiple targets. Kihara K, Kawahara J, Takeda Y. Neuroreport; 2008 Oct 08; 19(15):1493-6. PubMed ID: 18797304 [Abstract] [Full Text] [Related]
15. Differential influences of negative emotion on spatial and verbal working memory: Evidence from event-related potential and source current density analysis. Li X, Li X, Luo YJ. Neuroreport; 2006 Oct 02; 17(14):1555-9. PubMed ID: 16957607 [Abstract] [Full Text] [Related]
17. Spatial congruence in working memory: an ERP study. Zhou B, Zhang JX, Tan LH, Han S. Neuroreport; 2004 Dec 22; 15(18):2795-9. PubMed ID: 15597057 [Abstract] [Full Text] [Related]
18. Correspondence of visual evoked potentials with FMRI signals in human visual cortex. Whittingstall K, Wilson D, Schmidt M, Stroink G. Brain Topogr; 2008 Dec 22; 21(2):86-92. PubMed ID: 18841455 [Abstract] [Full Text] [Related]
19. The spatial-verbal difference in the n-back task: an ERP study. Chen YN, Mitra S. Acta Neurol Taiwan; 2009 Sep 22; 18(3):170-9. PubMed ID: 19960960 [Abstract] [Full Text] [Related]
20. [Hemispheric asymmetry of evoked potentials during performance of visuo-spatial tasks]. Grigorian VG, Arakelian AN, Agababian AR, Stepanian AIu. Fiziol Cheloveka; 2003 Sep 22; 29(6):51-4. PubMed ID: 14730932 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]