These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


276 related items for PubMed ID: 18681605

  • 21. Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction.
    Zañartu M, Galindo GE, Erath BD, Peterson SD, Wodicka GR, Hillman RE.
    J Acoust Soc Am; 2014 Dec; 136(6):3262. PubMed ID: 25480072
    [Abstract] [Full Text] [Related]

  • 22. Whispering--a single-subject study of glottal configuration and aerodynamics.
    Sundberg J, Scherer R, Hess M, Müller F.
    J Voice; 2010 Sep; 24(5):574-84. PubMed ID: 19850445
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Experimental analysis of the characteristics of artificial vocal folds.
    Misun V, Svancara P, Vasek M.
    J Voice; 2011 May; 25(3):308-18. PubMed ID: 20359864
    [Abstract] [Full Text] [Related]

  • 25. Theoretical consideration of the flow behavior in oscillating vocal fold.
    Deguchi S, Hyakutake T.
    J Biomech; 2009 May 11; 42(7):824-9. PubMed ID: 19269641
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Impact of wall rotation on supraglottal jet stability in voiced speech.
    Erath BD, Plesniak MW.
    J Acoust Soc Am; 2011 Mar 11; 129(3):EL64-70. PubMed ID: 21428469
    [Abstract] [Full Text] [Related]

  • 28. Flow-structure-acoustic interaction in a human voice model.
    Becker S, Kniesburges S, Müller S, Delgado A, Link G, Kaltenbacher M, Döllinger M.
    J Acoust Soc Am; 2009 Mar 11; 125(3):1351-61. PubMed ID: 19275292
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C, Zhang Y, Hottinger DG, Jiang JJ.
    J Acoust Soc Am; 2007 Oct 11; 122(4):2270-8. PubMed ID: 17902863
    [Abstract] [Full Text] [Related]

  • 32. Subglottal pressure oscillations accompanying phonation.
    Sundberg J, Scherer R, Hess M, Müller F, Granqvist S.
    J Voice; 2013 Jul 11; 27(4):411-21. PubMed ID: 23809566
    [Abstract] [Full Text] [Related]

  • 33. Development of a glottal area index that integrates glottal gap size and open quotient.
    Chen G, Kreiman J, Gerratt BR, Neubauer J, Shue YL, Alwan A.
    J Acoust Soc Am; 2013 Mar 11; 133(3):1656-66. PubMed ID: 23464035
    [Abstract] [Full Text] [Related]

  • 34. [Phonatory airflow in the supraglottal space].
    Müsebeck K, Rosenberg H.
    Laryngol Rhinol Otol (Stuttg); 1983 May 11; 62(5):226-31. PubMed ID: 6865619
    [Abstract] [Full Text] [Related]

  • 35. The effect of entrance radii on intraglottal pressure distributions in the divergent glottis.
    Li S, Scherer RC, Wan M, Wang S.
    J Acoust Soc Am; 2012 Feb 11; 131(2):1371-7. PubMed ID: 22352510
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation.
    Bailly L, Pelorson X, Henrich N, Ruty N.
    J Acoust Soc Am; 2008 Nov 11; 124(5):3296-308. PubMed ID: 19045812
    [Abstract] [Full Text] [Related]

  • 39. Influence of acoustic loading on an effective single mass model of the vocal folds.
    Zañartu M, Mongeau L, Wodicka GR.
    J Acoust Soc Am; 2007 Feb 11; 121(2):1119-29. PubMed ID: 17348533
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.