These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
176 related items for PubMed ID: 18701600
1. Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined. Malik AI, English JP, Colmer TD. Ann Bot; 2009 Jan; 103(2):237-48. PubMed ID: 18701600 [Abstract] [Full Text] [Related]
2. Transfer of the barrier to radial oxygen loss in roots of Hordeum marinum to wheat (Triticum aestivum): evaluation of four H. marinum-wheat amphiploids. Malik AI, Islam AK, Colmer TD. New Phytol; 2011 Apr; 190(2):499-508. PubMed ID: 21054414 [Abstract] [Full Text] [Related]
3. Oxygen deficiency and salinity affect cell-specific ion concentrations in adventitious roots of barley (Hordeum vulgare). Kotula L, Clode PL, Striker GG, Pedersen O, Läuchli A, Shabala S, Colmer TD. New Phytol; 2015 Dec; 208(4):1114-25. PubMed ID: 26094736 [Abstract] [Full Text] [Related]
4. Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. Garthwaite AJ, von Bothmer R, Colmer TD. J Exp Bot; 2005 Sep; 56(419):2365-78. PubMed ID: 16014366 [Abstract] [Full Text] [Related]
5. Water uptake by roots of Hordeum marinum: formation of a barrier to radial O2 loss does not affect root hydraulic conductivity. Garthwaite AJ, Steudle E, Colmer TD. J Exp Bot; 2006 Sep; 57(3):655-64. PubMed ID: 16410258 [Abstract] [Full Text] [Related]
6. Lotus tenuis tolerates combined salinity and waterlogging: maintaining O2 transport to roots and expression of an NHX1-like gene contribute to regulation of Na+ transport. Teakle NL, Amtmann A, Real D, Colmer TD. Physiol Plant; 2010 Aug 01; 139(4):358-74. PubMed ID: 20444189 [Abstract] [Full Text] [Related]
10. Anatomical and biochemical characterisation of a barrier to radial O2 loss in adventitious roots of two contrasting Hordeum marinum accessions. Kotula L, Schreiber L, Colmer TD, Nakazono M. Funct Plant Biol; 2017 Sep 01; 44(9):845-857. PubMed ID: 32480613 [Abstract] [Full Text] [Related]
16. Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. Wu H, Shabala L, Barry K, Zhou M, Shabala S. Physiol Plant; 2013 Dec 27; 149(4):515-27. PubMed ID: 23611560 [Abstract] [Full Text] [Related]
17. Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (Daucus carota L.). Gibberd MR, Turner NC, Storey R. Ann Bot; 2002 Dec 27; 90(6):715-24. PubMed ID: 12451027 [Abstract] [Full Text] [Related]
18. Lotus tenuis tolerates the interactive effects of salinity and waterlogging by 'excluding' Na+ and Cl- from the xylem. Teakle N, Flowers T, Real D, Colmer T. J Exp Bot; 2007 Dec 27; 58(8):2169-80. PubMed ID: 17510213 [Abstract] [Full Text] [Related]
19. Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.). Talbi Zribi O, Abdelly C, Debez A. Plant Biol (Stuttg); 2011 Nov 27; 13(6):872-80. PubMed ID: 21974779 [Abstract] [Full Text] [Related]
20. Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K(+) -permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley. Bose J, Shabala L, Pottosin I, Zeng F, Velarde-Buendía AM, Massart A, Poschenrieder C, Hariadi Y, Shabala S. Plant Cell Environ; 2014 Mar 27; 37(3):589-600. PubMed ID: 23937055 [Abstract] [Full Text] [Related] Page: [Next] [New Search]