These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


336 related items for PubMed ID: 18702705

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Characterization of dopamine-dependent rewarding and locomotor stimulant effects of intravenously-administered methylphenidate in rats.
    Sellings LH, McQuade LE, Clarke PB.
    Neuroscience; 2006 Sep 01; 141(3):1457-68. PubMed ID: 16753267
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Dopamine receptor blockade modulates the rewarding and aversive properties of nicotine via dissociable neuronal activity patterns in the nucleus accumbens.
    Sun N, Laviolette SR, Addiction Research Group.
    Neuropsychopharmacology; 2014 Nov 01; 39(12):2799-815. PubMed ID: 24896614
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Nicotine differentially affects dopamine transmission in the nucleus accumbens shell and core of Lewis and Fischer 344 rats.
    Cadoni C, Muto T, Di Chiara G.
    Neuropharmacology; 2009 Nov 01; 57(5-6):496-501. PubMed ID: 19647004
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Expression of testosterone conditioned place preference is blocked by peripheral or intra-accumbens injection of alpha-flupenthixol.
    Packard MG, Schroeder JP, Alexander GM.
    Horm Behav; 1998 Aug 01; 34(1):39-47. PubMed ID: 9735227
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. An analysis of the rewarding and aversive associative properties of nicotine in the neonatal quinpirole model: Effects on glial cell line-derived neurotrophic factor (GDNF).
    Brown RW, Kirby SL, Denton AR, Dose JM, Cummins ED, Drew Gill W, Burgess KC.
    Schizophr Res; 2018 Apr 01; 194():107-114. PubMed ID: 28314679
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. 5-HT(1B) receptors in nucleus accumbens efferents enhance both rewarding and aversive effects of cocaine.
    Barot SK, Ferguson SM, Neumaier JF.
    Eur J Neurosci; 2007 May 01; 25(10):3125-31. PubMed ID: 17509084
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Opposing Roles of Rapid Dopamine Signaling Across the Rostral-Caudal Axis of the Nucleus Accumbens Shell in Drug-Induced Negative Affect.
    Hurley SW, West EA, Carelli RM.
    Biol Psychiatry; 2017 Dec 01; 82(11):839-846. PubMed ID: 28624112
    [Abstract] [Full Text] [Related]

  • 19. Disruption of dopaminergic neurotransmission in nucleus accumbens core inhibits the locomotor stimulant effects of nicotine and D-amphetamine in rats.
    Boye SM, Grant RJ, Clarke PB.
    Neuropharmacology; 2001 May 01; 40(6):792-805. PubMed ID: 11369033
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.