These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
484 related items for PubMed ID: 18709652
1. Validation of a novel biomarker for acute axonal injury in experimental autoimmune encephalomyelitis. Gresle MM, Shaw G, Jarrott B, Alexandrou EN, Friedhuber A, Kilpatrick TJ, Butzkueven H. J Neurosci Res; 2008 Dec; 86(16):3548-55. PubMed ID: 18709652 [Abstract] [Full Text] [Related]
2. Astrocyte-associated axonal damage in pre-onset stages of experimental autoimmune encephalomyelitis. Wang D, Ayers MM, Catmull DV, Hazelwood LJ, Bernard CC, Orian JM. Glia; 2005 Aug 15; 51(3):235-40. PubMed ID: 15812814 [Abstract] [Full Text] [Related]
3. Enhanced visualization of axonopathy in EAE using thy1-YFP transgenic mice. Bannerman PG, Hahn A. J Neurol Sci; 2007 Sep 15; 260(1-2):23-32. PubMed ID: 17493638 [Abstract] [Full Text] [Related]
4. Endogenous leukemia inhibitory factor production limits autoimmune demyelination and oligodendrocyte loss. Butzkueven H, Emery B, Cipriani T, Marriott MP, Kilpatrick TJ. Glia; 2006 May 15; 53(7):696-703. PubMed ID: 16498619 [Abstract] [Full Text] [Related]
5. Axon loss is responsible for chronic neurological deficit following inflammatory demyelination in the rat. Papadopoulos D, Pham-Dinh D, Reynolds R. Exp Neurol; 2006 Feb 15; 197(2):373-85. PubMed ID: 16337942 [Abstract] [Full Text] [Related]
6. Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury. Shaw G, Yang C, Ellis R, Anderson K, Parker Mickle J, Scheff S, Pike B, Anderson DK, Howland DR. Biochem Biophys Res Commun; 2005 Nov 04; 336(4):1268-77. PubMed ID: 16176808 [Abstract] [Full Text] [Related]
7. Pattern of axonal injury in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Herrero-Herranz E, Pardo LA, Gold R, Linker RA. Neurobiol Dis; 2008 May 04; 30(2):162-73. PubMed ID: 18342527 [Abstract] [Full Text] [Related]
8. VEGF and angiogenesis in acute and chronic MOG((35-55)) peptide induced EAE. Roscoe WA, Welsh ME, Carter DE, Karlik SJ. J Neuroimmunol; 2009 Apr 30; 209(1-2):6-15. PubMed ID: 19233483 [Abstract] [Full Text] [Related]
9. Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo. Lo AC, Saab CY, Black JA, Waxman SG. J Neurophysiol; 2003 Nov 30; 90(5):3566-71. PubMed ID: 12904334 [Abstract] [Full Text] [Related]
10. Characterization of relapsing-remitting and chronic forms of experimental autoimmune encephalomyelitis in C57BL/6 mice. Berard JL, Wolak K, Fournier S, David S. Glia; 2010 Mar 30; 58(4):434-45. PubMed ID: 19780195 [Abstract] [Full Text] [Related]
11. Protective effects of progesterone administration on axonal pathology in mice with experimental autoimmune encephalomyelitis. Garay L, Gonzalez Deniselle MC, Meyer M, Costa JJ, Lima A, Roig P, De nicola AF. Brain Res; 2009 Aug 04; 1283():177-85. PubMed ID: 19497309 [Abstract] [Full Text] [Related]
12. Calcium channel blockers ameliorate disease in a mouse model of multiple sclerosis. Brand-Schieber E, Werner P. Exp Neurol; 2004 Sep 04; 189(1):5-9. PubMed ID: 15296830 [Abstract] [Full Text] [Related]
13. Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE. Black JA, Liu S, Hains BC, Saab CY, Waxman SG. Brain; 2006 Dec 04; 129(Pt 12):3196-208. PubMed ID: 16931536 [Abstract] [Full Text] [Related]
14. Steroid protection in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Garay L, Gonzalez Deniselle MC, Gierman L, Meyer M, Lima A, Roig P, De Nicola AF. Neuroimmunomodulation; 2008 Dec 04; 15(1):76-83. PubMed ID: 18667803 [Abstract] [Full Text] [Related]
15. Pathological findings in rats with experimental allergic encephalomyelitis. Dong M, Liu R, Guo L, Li C, Tan G. APMIS; 2008 Nov 04; 116(11):972-84. PubMed ID: 19132994 [Abstract] [Full Text] [Related]
16. Monitoring of acute axonal injury in the swine spinal cord with EAE by diffusion tensor imaging. Feng S, Hong Y, Zhou Z, Jinsong Z, Xiaofeng D, Zaizhong W, Yali G, Ying L, Yingjuan C, Yi H. J Magn Reson Imaging; 2009 Aug 04; 30(2):277-85. PubMed ID: 19629996 [Abstract] [Full Text] [Related]
17. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Craner MJ, Damarjian TG, Liu S, Hains BC, Lo AC, Black JA, Newcombe J, Cuzner ML, Waxman SG. Glia; 2005 Jan 15; 49(2):220-9. PubMed ID: 15390090 [Abstract] [Full Text] [Related]
18. Hyperphosphorylated neurofilament NF-H as a biomarker of the efficacy of minocycline therapy for spinal cord injury. Ueno T, Ohori Y, Ito J, Hoshikawa S, Yamamoto S, Nakamura K, Tanaka S, Akai M, Tobimatsu Y, Ogata T. Spinal Cord; 2011 Mar 15; 49(3):333-6. PubMed ID: 20805831 [Abstract] [Full Text] [Related]
19. Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE). Olechowski CJ, Truong JJ, Kerr BJ. Pain; 2009 Jan 15; 141(1-2):156-64. PubMed ID: 19084337 [Abstract] [Full Text] [Related]
20. Functional role of brain-derived neurotrophic factor in neuroprotective autoimmunity: therapeutic implications in a model of multiple sclerosis. Linker RA, Lee DH, Demir S, Wiese S, Kruse N, Siglienti I, Gerhardt E, Neumann H, Sendtner M, Lühder F, Gold R. Brain; 2010 Aug 15; 133(Pt 8):2248-63. PubMed ID: 20826430 [Abstract] [Full Text] [Related] Page: [Next] [New Search]