These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


474 related items for PubMed ID: 18710212

  • 1. Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases.
    Sadiq SK, Wright D, Watson SJ, Zasada SJ, Stoica I, Coveney PV.
    J Chem Inf Model; 2008 Sep; 48(9):1909-19. PubMed ID: 18710212
    [Abstract] [Full Text] [Related]

  • 2. Accurate ensemble molecular dynamics binding free energy ranking of multidrug-resistant HIV-1 proteases.
    Sadiq SK, Wright DW, Kenway OA, Coveney PV.
    J Chem Inf Model; 2010 May 24; 50(5):890-905. PubMed ID: 20384328
    [Abstract] [Full Text] [Related]

  • 3. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance.
    Hou T, Yu R.
    J Med Chem; 2007 Mar 22; 50(6):1177-88. PubMed ID: 17300185
    [Abstract] [Full Text] [Related]

  • 4. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases.
    Stoica I, Sadiq SK, Coveney PV.
    J Am Chem Soc; 2008 Feb 27; 130(8):2639-48. PubMed ID: 18225901
    [Abstract] [Full Text] [Related]

  • 5. Molecular dynamics and free energy studies on the wild-type and mutated HIV-1 protease complexed with four approved drugs: mechanism of binding and drug resistance.
    Alcaro S, Artese A, Ceccherini-Silberstein F, Ortuso F, Perno CF, Sing T, Svicher V.
    J Chem Inf Model; 2009 Jul 27; 49(7):1751-61. PubMed ID: 19537723
    [Abstract] [Full Text] [Related]

  • 6. How inaccuracies in protein structure models affect estimates of protein-ligand interactions: computational analysis of HIV-I protease inhibitor binding.
    Thorsteinsdottir HB, Schwede T, Zoete V, Meuwly M.
    Proteins; 2006 Nov 01; 65(2):407-23. PubMed ID: 16941468
    [Abstract] [Full Text] [Related]

  • 7. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations.
    Lepsík M, Kríz Z, Havlas Z.
    Proteins; 2004 Nov 01; 57(2):279-93. PubMed ID: 15340915
    [Abstract] [Full Text] [Related]

  • 8. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors.
    Wittayanarakul K, Hannongbua S, Feig M.
    J Comput Chem; 2008 Apr 15; 29(5):673-85. PubMed ID: 17849388
    [Abstract] [Full Text] [Related]

  • 9. Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach.
    Jenwitheesuk E, Samudrala R.
    Antivir Ther; 2005 Apr 15; 10(1):157-66. PubMed ID: 15751773
    [Abstract] [Full Text] [Related]

  • 10. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors.
    Li D, Liu MS, Ji B, Hwang K, Huang Y.
    J Chem Phys; 2009 Jun 07; 130(21):215102. PubMed ID: 19508101
    [Abstract] [Full Text] [Related]

  • 11. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease.
    Kar P, Lipowsky R, Knecht V.
    J Phys Chem B; 2013 May 16; 117(19):5793-805. PubMed ID: 23614718
    [Abstract] [Full Text] [Related]

  • 12. Relation between sequence and structure of HIV-1 protease inhibitor complexes: a model system for the analysis of protein flexibility.
    Zoete V, Michielin O, Karplus M.
    J Mol Biol; 2002 Jan 04; 315(1):21-52. PubMed ID: 11771964
    [Abstract] [Full Text] [Related]

  • 13. Comparative binding energy analysis of HIV-1 protease inhibitors: incorporation of solvent effects and validation as a powerful tool in receptor-based drug design.
    Pérez C, Pastor M, Ortiz AR, Gago F.
    J Med Chem; 1998 Mar 12; 41(6):836-52. PubMed ID: 9526559
    [Abstract] [Full Text] [Related]

  • 14. Evolutionary analysis of HIV-1 protease inhibitors: Methods for design of inhibitors that evade resistance.
    Stoffler D, Sanner MF, Morris GM, Olson AJ, Goodsell DS.
    Proteins; 2002 Jul 01; 48(1):63-74. PubMed ID: 12012338
    [Abstract] [Full Text] [Related]

  • 15. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
    Durdagi S, Mavromoustakos T, Chronakis N, Papadopoulos MG.
    Bioorg Med Chem; 2008 Dec 01; 16(23):9957-74. PubMed ID: 18996019
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations.
    Wittayanarakul K, Aruksakunwong O, Sompornpisut P, Sanghiran-Lee V, Parasuk V, Pinitglang S, Hannongbua S.
    J Chem Inf Model; 2005 Dec 01; 45(2):300-8. PubMed ID: 15807491
    [Abstract] [Full Text] [Related]

  • 19. Absolute free energies of binding of peptide analogs to the HIV-1 protease from molecular dynamics simulations.
    Bartels C, Widmer A, Ehrhardt C.
    J Comput Chem; 2005 Sep 01; 26(12):1294-305. PubMed ID: 15981257
    [Abstract] [Full Text] [Related]

  • 20. Molecular dynamics simulations of 14 HIV protease mutants in complexes with indinavir.
    Chen X, Weber IT, Harrison RW.
    J Mol Model; 2004 Dec 01; 10(5-6):373-81. PubMed ID: 15597206
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.