These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


474 related items for PubMed ID: 18710212

  • 21. Suppression of HIV-1 protease inhibitor resistance by phosphonate-mediated solvent anchoring.
    Cihlar T, He GX, Liu X, Chen JM, Hatada M, Swaminathan S, McDermott MJ, Yang ZY, Mulato AS, Chen X, Leavitt SA, Stray KM, Lee WA.
    J Mol Biol; 2006 Oct 27; 363(3):635-47. PubMed ID: 16979654
    [Abstract] [Full Text] [Related]

  • 22. Incorporating protein flexibility in structure-based drug discovery: using HIV-1 protease as a test case.
    Meagher KL, Carlson HA.
    J Am Chem Soc; 2004 Oct 20; 126(41):13276-81. PubMed ID: 15479081
    [Abstract] [Full Text] [Related]

  • 23. Prediction of the binding energy for small molecules, peptides and proteins.
    Schapira M, Totrov M, Abagyan R.
    J Mol Recognit; 1999 Oct 20; 12(3):177-90. PubMed ID: 10398408
    [Abstract] [Full Text] [Related]

  • 24. Optimization and computational evaluation of a series of potential active site inhibitors of the V82F/I84V drug-resistant mutant of HIV-1 protease: an application of the relaxed complex method of structure-based drug design.
    Perryman AL, Lin JH, Andrew McCammon J.
    Chem Biol Drug Des; 2006 May 20; 67(5):336-45. PubMed ID: 16784458
    [Abstract] [Full Text] [Related]

  • 25. Analysis of HIV wild-type and mutant structures via in silico docking against diverse ligand libraries.
    Chang MW, Lindstrom W, Olson AJ, Belew RK.
    J Chem Inf Model; 2007 May 20; 47(3):1258-62. PubMed ID: 17447753
    [Abstract] [Full Text] [Related]

  • 26. Molecular dynamic and free energy studies of primary resistance mutations in HIV-1 protease-ritonavir complexes.
    Aruksakunwong O, Wolschann P, Hannongbua S, Sompornpisut P.
    J Chem Inf Model; 2006 May 20; 46(5):2085-92. PubMed ID: 16995739
    [Abstract] [Full Text] [Related]

  • 27. Drug design: new inhibitors for HIV-1 protease based on Nelfinavir as lead.
    Perez MA, Fernandes PA, Ramos MJ.
    J Mol Graph Model; 2007 Oct 20; 26(3):634-42. PubMed ID: 17459746
    [Abstract] [Full Text] [Related]

  • 28. Structure-based design of carbon nanotubes as HIV-1 protease inhibitors: atomistic and coarse-grained simulations.
    Cheng Y, Li D, Ji B, Shi X, Gao H.
    J Mol Graph Model; 2010 Sep 20; 29(2):171-7. PubMed ID: 20580296
    [Abstract] [Full Text] [Related]

  • 29. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors.
    Ferrari AM, Degliesposti G, Sgobba M, Rastelli G.
    Bioorg Med Chem; 2007 Dec 15; 15(24):7865-77. PubMed ID: 17870536
    [Abstract] [Full Text] [Related]

  • 30. E-novo: an automated workflow for efficient structure-based lead optimization.
    Pearce BC, Langley DR, Kang J, Huang H, Kulkarni A.
    J Chem Inf Model; 2009 Jul 15; 49(7):1797-809. PubMed ID: 19552372
    [Abstract] [Full Text] [Related]

  • 31. Structure-based ligand design by dynamically assembling molecular building blocks at binding site.
    Liu H, Duan Z, Luo Q, Shi Y.
    Proteins; 1999 Sep 01; 36(4):462-70. PubMed ID: 10450088
    [Abstract] [Full Text] [Related]

  • 32. Genotype dependent QSAR for HIV-1 protease inhibition.
    Boutton CW, De Bondt HL, De Jonge MR.
    J Med Chem; 2005 Mar 24; 48(6):2115-20. PubMed ID: 15771454
    [Abstract] [Full Text] [Related]

  • 33. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants.
    Kozísek M, Bray J, Rezácová P, Sasková K, Brynda J, Pokorná J, Mammano F, Rulísek L, Konvalinka J.
    J Mol Biol; 2007 Dec 07; 374(4):1005-16. PubMed ID: 17977555
    [Abstract] [Full Text] [Related]

  • 34. Discovery of HIV-1 protease inhibitors with picomolar affinities incorporating N-aryl-oxazolidinone-5-carboxamides as novel P2 ligands.
    Ali A, Reddy GS, Cao H, Anjum SG, Nalam MN, Schiffer CA, Rana TM.
    J Med Chem; 2006 Dec 14; 49(25):7342-56. PubMed ID: 17149864
    [Abstract] [Full Text] [Related]

  • 35. Thermodynamic rules for the design of high affinity HIV-1 protease inhibitors with adaptability to mutations and high selectivity towards unwanted targets.
    Ohtaka H, Muzammil S, Schön A, Velazquez-Campoy A, Vega S, Freire E.
    Int J Biochem Cell Biol; 2004 Sep 14; 36(9):1787-99. PubMed ID: 15183345
    [Abstract] [Full Text] [Related]

  • 36. A semiempirical free energy force field with charge-based desolvation.
    Huey R, Morris GM, Olson AJ, Goodsell DS.
    J Comput Chem; 2007 Apr 30; 28(6):1145-52. PubMed ID: 17274016
    [Abstract] [Full Text] [Related]

  • 37. Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model.
    Wang W, Kollman PA.
    J Mol Biol; 2000 Nov 03; 303(4):567-82. PubMed ID: 11054292
    [Abstract] [Full Text] [Related]

  • 38. An approach to rapid estimation of relative binding affinities of enzyme inhibitors: application to peptidomimetic inhibitors of the human immunodeficiency virus type 1 protease.
    Viswanadhan VN, Reddy MR, Wlodawer A, Varney MD, Weinstein JN.
    J Med Chem; 1996 Feb 02; 39(3):705-12. PubMed ID: 8576913
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Structural parameterization of the binding enthalpy of small ligands.
    Luque I, Freire E.
    Proteins; 2002 Nov 01; 49(2):181-90. PubMed ID: 12210999
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 24.