These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


474 related items for PubMed ID: 18710212

  • 41. Design, synthesis, and biological evaluation of monopyrrolinone-based HIV-1 protease inhibitors.
    Smith AB, Cantin LD, Pasternak A, Guise-Zawacki L, Yao W, Charnley AK, Barbosa J, Sprengeler PA, Hirschmann R, Munshi S, Olsen DB, Schleif WA, Kuo LC.
    J Med Chem; 2003 May 08; 46(10):1831-44. PubMed ID: 12723947
    [Abstract] [Full Text] [Related]

  • 42. Comparing the accumulation of active- and nonactive-site mutations in the HIV-1 protease.
    Clemente JC, Moose RE, Hemrajani R, Whitford LR, Govindasamy L, Reutzel R, McKenna R, Agbandje-McKenna M, Goodenow MM, Dunn BM.
    Biochemistry; 2004 Sep 28; 43(38):12141-51. PubMed ID: 15379553
    [Abstract] [Full Text] [Related]

  • 43. Structural and energetic analysis on the complexes of clinically isolated subtype C HIV-1 proteases and approved inhibitors by molecular dynamics simulation.
    Matsuyama S, Aydan A, Ode H, Hata M, Sugiura W, Hoshino T.
    J Phys Chem B; 2010 Jan 14; 114(1):521-30. PubMed ID: 20055526
    [Abstract] [Full Text] [Related]

  • 44. Structure-based thermodynamic analysis of HIV-1 protease inhibitors.
    Bardi JS, Luque I, Freire E.
    Biochemistry; 1997 Jun 03; 36(22):6588-96. PubMed ID: 9184138
    [Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations.
    Verkhivker GM.
    Pac Symp Biocomput; 1996 Jun 03; ():638-52. PubMed ID: 9390264
    [Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52. Role of structural water molecule in HIV protease-inhibitor complexes: a QM/MM study.
    Suresh CH, Vargheese AM, Vijayalakshmi KP, Mohan N, Koga N.
    J Comput Chem; 2008 Aug 03; 29(11):1840-9. PubMed ID: 18351589
    [Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54. Prediction of HIV-1 protease inhibitor resistance by Molecular Modeling Protocols (MMPs) using GenMol software.
    Pèpe G, Courcambeck J, Perbost R, Jouanna P, Halfon P.
    Eur J Med Chem; 2008 Nov 03; 43(11):2518-34. PubMed ID: 18455274
    [Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58. Predicting drug-resistant mutations of HIV protease.
    Ishikita H, Warshel A.
    Angew Chem Int Ed Engl; 2008 Nov 03; 47(4):697-700. PubMed ID: 18058968
    [No Abstract] [Full Text] [Related]

  • 59. Restrained molecular dynamics simulations of HIV-1 protease: the first step in validating a new target for drug design.
    Perryman AL, Lin JH, McCammon JA.
    Biopolymers; 2006 Jun 15; 82(3):272-84. PubMed ID: 16508951
    [Abstract] [Full Text] [Related]

  • 60. Analysis of the pH-dependencies of the association and dissociation kinetics of HIV-1 protease inhibitors.
    Gossas T, Danielson UH.
    J Mol Recognit; 2003 Jun 15; 16(4):203-12. PubMed ID: 12898670
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 24.