These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
184 related items for PubMed ID: 18715105
1. Cytoskeleton mediated effective elastic properties of model red blood cell membranes. Zhang R, Brown FL. J Chem Phys; 2008 Aug 14; 129(6):065101. PubMed ID: 18715105 [Abstract] [Full Text] [Related]
2. Dynamic simulations of membranes with cytoskeletal interactions. Lin LC, Brown FL. Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul 14; 72(1 Pt 1):011910. PubMed ID: 16090004 [Abstract] [Full Text] [Related]
3. Deforming biological membranes: how the cytoskeleton affects a polymerizing fiber. Daniels DR, Wang JC, Briehl RW, Turner MS. J Chem Phys; 2006 Jan 14; 124(2):024903. PubMed ID: 16422644 [Abstract] [Full Text] [Related]
5. Cytoskeleton confinement and tension of red blood cell membranes. Gov N, Zilman AG, Safran S. Phys Rev Lett; 2003 Jun 06; 90(22):228101. PubMed ID: 12857343 [Abstract] [Full Text] [Related]
6. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. Li H, Lykotrafitis G. Biophys J; 2014 Aug 05; 107(3):642-653. PubMed ID: 25099803 [Abstract] [Full Text] [Related]
7. A unified biochemical and continuum mechanical red blood cell membrane bilayer--couple model. Rana AP, Rana SP, Rana JP. Indian J Physiol Pharmacol; 2004 Oct 05; 48(4):409-18. PubMed ID: 15907049 [Abstract] [Full Text] [Related]
8. Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size. Fournier JB, Lacoste D, Raphaël E. Phys Rev Lett; 2004 Jan 09; 92(1):018102. PubMed ID: 14754023 [Abstract] [Full Text] [Related]
9. Image-based model of the spectrin cytoskeleton for red blood cell simulation. Fai TG, Leo-Macias A, Stokes DL, Peskin CS. PLoS Comput Biol; 2017 Oct 09; 13(10):e1005790. PubMed ID: 28991926 [Abstract] [Full Text] [Related]
13. Active elastic network: cytoskeleton of the red blood cell. Gov NS. Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan 09; 75(1 Pt 1):011921. PubMed ID: 17358198 [Abstract] [Full Text] [Related]
14. New insights into function of red cell membrane proteins and their interaction with spectrin-based membrane skeleton. Mohandas N, An X. Transfus Clin Biol; 2006 Jan 09; 13(1-2):29-30. PubMed ID: 16581279 [No Abstract] [Full Text] [Related]
15. Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Sheetz MP, Sable JE, Döbereiner HG. Annu Rev Biophys Biomol Struct; 2006 Jan 09; 35():417-34. PubMed ID: 16689643 [Abstract] [Full Text] [Related]
16. Computer simulation of a model network for the erythrocyte cytoskeleton. Boal DH. Biophys J; 1994 Aug 09; 67(2):521-9. PubMed ID: 7948670 [Abstract] [Full Text] [Related]
17. The spectrin network as a barrier to lateral diffusion in erythrocytes. A percolation analysis. Saxton MJ. Biophys J; 1989 Jan 09; 55(1):21-8. PubMed ID: 2930822 [Abstract] [Full Text] [Related]
18. Unique elastic properties of the spectrin tetramer as revealed by multiscale coarse-grained modeling. Mirijanian DT, Voth GA. Proc Natl Acad Sci U S A; 2008 Jan 29; 105(4):1204-8. PubMed ID: 18202182 [Abstract] [Full Text] [Related]
19. Brownian dynamics in Fourier space: membrane simulations over long length and time scales. Lin LC, Brown FL. Phys Rev Lett; 2004 Dec 17; 93(25):256001. PubMed ID: 15697914 [Abstract] [Full Text] [Related]
20. Barrier-free paths of directed protein motion in the erythrocyte plasma membrane. Boal DH, Boey SK. Biophys J; 1995 Aug 17; 69(2):372-9. PubMed ID: 8527650 [Abstract] [Full Text] [Related] Page: [Next] [New Search]