These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
411 related items for PubMed ID: 18715773
1. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. Mahler GJ, Shuler ML, Glahn RP. J Nutr Biochem; 2009 Jul; 20(7):494-502. PubMed ID: 18715773 [Abstract] [Full Text] [Related]
2. Different responses of Fe transporters in Caco-2/HT29-MTX cocultures than in independent Caco-2 cell cultures. Laparra JM, Glahn RP, Miller DD. Cell Biol Int; 2009 Sep; 33(9):971-7. PubMed ID: 19524686 [Abstract] [Full Text] [Related]
3. [Effects of ascorbic acid and citric acid on iron bioavailability in an in vitro digestion/ Caco-2 cell culture model]. Lei J, Zhang MQ, Huang CY, Bai L, He ZH. Nan Fang Yi Ke Da Xue Xue Bao; 2008 Oct; 28(10):1743-7. PubMed ID: 18971162 [Abstract] [Full Text] [Related]
4. Moving toward a more physiological model: application of mucin to refine the in vitro digestion/Caco-2 cell culture system. Jin F, Welch R, Glahn R. J Agric Food Chem; 2006 Nov 15; 54(23):8962-7. PubMed ID: 17090148 [Abstract] [Full Text] [Related]
5. Effects of ascorbic acid, phytic acid and tannic acid on iron bioavailability from reconstituted ferritin measured by an in vitro digestion-Caco-2 cell model. Jin F, Frohman C, Thannhauser TW, Welch RM, Glahn RP. Br J Nutr; 2009 Apr 15; 101(7):972-81. PubMed ID: 18755051 [Abstract] [Full Text] [Related]
6. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. Gagnon M, Zihler Berner A, Chervet N, Chassard C, Lacroix C. J Microbiol Methods; 2013 Sep 15; 94(3):274-9. PubMed ID: 23835135 [Abstract] [Full Text] [Related]
7. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. Béduneau A, Tempesta C, Fimbel S, Pellequer Y, Jannin V, Demarne F, Lamprecht A. Eur J Pharm Biopharm; 2014 Jul 15; 87(2):290-8. PubMed ID: 24704198 [Abstract] [Full Text] [Related]
8. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. Hilgendorf C, Spahn-Langguth H, Regårdh CG, Lipka E, Amidon GL, Langguth P. J Pharm Sci; 2000 Jan 15; 89(1):63-75. PubMed ID: 10664539 [Abstract] [Full Text] [Related]
9. [Study on bioavailability of Fe-riched wheat varieties using an in vitro digestion/Caco-2 cell model]. Lei J, Huang C, Zhang Y, Zhang M. Wei Sheng Yan Jiu; 2009 Mar 15; 38(2):166-9. PubMed ID: 19408658 [Abstract] [Full Text] [Related]
10. Comparing soluble ferric pyrophosphate to common iron salts and chelates as sources of bioavailable iron in a Caco-2 cell culture model. Zhu L, Glahn RP, Nelson D, Miller DD. J Agric Food Chem; 2009 Jun 10; 57(11):5014-9. PubMed ID: 19449807 [Abstract] [Full Text] [Related]
11. Kaempferol in red and pinto bean seed (Phaseolus vulgaris L.) coats inhibits iron bioavailability using an in vitro digestion/human Caco-2 cell model. Hu Y, Cheng Z, Heller LI, Krasnoff SB, Glahn RP, Welch RM. J Agric Food Chem; 2006 Nov 29; 54(24):9254-61. PubMed ID: 17117818 [Abstract] [Full Text] [Related]
12. Chicken thigh, chicken liver, and iron-fortified wheat flour increase iron uptake in an in vitro digestion/Caco-2 cell model. Pachón H, Stoltzfus RJ, Glahn RP. Nutr Res; 2008 Dec 29; 28(12):851-8. PubMed ID: 19083498 [Abstract] [Full Text] [Related]
13. Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Laparra JM, Sanz Y. Lett Appl Microbiol; 2009 Dec 29; 49(6):695-701. PubMed ID: 19843211 [Abstract] [Full Text] [Related]
14. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Antunes F, Andrade F, Araújo F, Ferreira D, Sarmento B. Eur J Pharm Biopharm; 2013 Apr 29; 83(3):427-35. PubMed ID: 23159710 [Abstract] [Full Text] [Related]
15. Defining conditions for the co-culture of Caco-2 and HT29-MTX cells using Taguchi design. Chen XM, Elisia I, Kitts DD. J Pharmacol Toxicol Methods; 2010 Apr 29; 61(3):334-42. PubMed ID: 20159047 [Abstract] [Full Text] [Related]
16. Intestinal transport of methylmercury and inorganic mercury in various models of Caco-2 and HT29-MTX cells. Vázquez M, Calatayud M, Vélez D, Devesa V. Toxicology; 2013 Sep 15; 311(3):147-53. PubMed ID: 23793072 [Abstract] [Full Text] [Related]
17. Mucus interactions with liposomes encapsulating bioactives: Interfacial tensiometry and cellular uptake on Caco-2 and cocultures of Caco-2/HT29-MTX. Li Y, Arranz E, Guri A, Corredig M. Food Res Int; 2017 Feb 15; 92():128-137. PubMed ID: 28290290 [Abstract] [Full Text] [Related]
18. HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro-in vivo correlation with permeability data from rats and humans. Walter E, Janich S, Roessler BJ, Hilfinger JM, Amidon GL. J Pharm Sci; 1996 Oct 15; 85(10):1070-6. PubMed ID: 8897273 [Abstract] [Full Text] [Related]
19. Biorelevant media resistant co-culture model mimicking permeability of human intestine. Antoine D, Pellequer Y, Tempesta C, Lorscheidt S, Kettel B, Tamaddon L, Jannin V, Demarne F, Lamprecht A, Béduneau A. Int J Pharm; 2015 Mar 15; 481(1-2):27-36. PubMed ID: 25601199 [Abstract] [Full Text] [Related]
20. Comparison of iron uptake from reduced iron powder and FeSO4 using the Caco-2 cell model: effects of ascorbic acid, phytic acid, and pH. He WL, Feng Y, Li XL, Yang XE. J Agric Food Chem; 2008 Apr 23; 56(8):2637-42. PubMed ID: 18376840 [Abstract] [Full Text] [Related] Page: [Next] [New Search]