These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
264 related items for PubMed ID: 18717559
1. Residual ligand entropy in the binding of p-substituted benzenesulfonamide ligands to bovine carbonic anhydrase II. Stöckmann H, Bronowska A, Syme NR, Thompson GS, Kalverda AP, Warriner SL, Homans SW. J Am Chem Soc; 2008 Sep 17; 130(37):12420-6. PubMed ID: 18717559 [Abstract] [Full Text] [Related]
2. Thermodynamic parameters for the association of fluorinated benzenesulfonamides with bovine carbonic anhydrase II. Krishnamurthy VM, Bohall BR, Kim CY, Moustakas DT, Christianson DW, Whitesides GM. Chem Asian J; 2007 Jan 08; 2(1):94-105. PubMed ID: 17441142 [Abstract] [Full Text] [Related]
3. Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor. Matulis D, Kranz JK, Salemme FR, Todd MJ. Biochemistry; 2005 Apr 05; 44(13):5258-66. PubMed ID: 15794662 [Abstract] [Full Text] [Related]
5. Thermodynamic optimisation in drug discovery: a case study using carbonic anhydrase inhibitors. Scott AD, Phillips C, Alex A, Flocco M, Bent A, Randall A, O'Brien R, Damian L, Jones LH. ChemMedChem; 2009 Dec 05; 4(12):1985-9. PubMed ID: 19882701 [No Abstract] [Full Text] [Related]
7. Thermodynamics of binding of 2-methoxy-3-isopropylpyrazine and 2-methoxy-3-isobutylpyrazine to the major urinary protein. Bingham RJ, Findlay JB, Hsieh SY, Kalverda AP, Kjellberg A, Perazzolo C, Phillips SE, Seshadri K, Trinh CH, Turnbull WB, Bodenhausen G, Homans SW. J Am Chem Soc; 2004 Feb 18; 126(6):1675-81. PubMed ID: 14871097 [Abstract] [Full Text] [Related]
8. Binding affinity of substituted ureido-benzenesulfonamide ligands to the carbonic anhydrase receptor: a theoretical study of enzyme inhibition. Sahu C, Sen K, Pakhira S, Mondal B, Das AK. J Comput Chem; 2013 Aug 15; 34(22):1907-16. PubMed ID: 23712937 [Abstract] [Full Text] [Related]
9. Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the "hydrophobic wall" of carbonic anhydrase. Mecinović J, Snyder PW, Mirica KA, Bai S, Mack ET, Kwant RL, Moustakas DT, Héroux A, Whitesides GM. J Am Chem Soc; 2011 Sep 07; 133(35):14017-26. PubMed ID: 21790183 [Abstract] [Full Text] [Related]
10. Protein surface-assisted enhancement in the binding affinity of an inhibitor for recombinant human carbonic anhydrase-II. Banerjee AL, Swanson M, Roy BC, Jia X, Haldar MK, Mallik S, Srivastava DK. J Am Chem Soc; 2004 Sep 08; 126(35):10875-83. PubMed ID: 15339172 [Abstract] [Full Text] [Related]
11. Benzimidazo[1,2-c][1,2,3]thiadiazole-7-sulfonamides as inhibitors of carbonic anhydrase. Dudutiene V, Baranauskiene L, Matulis D. Bioorg Med Chem Lett; 2007 Jun 15; 17(12):3335-8. PubMed ID: 17442568 [Abstract] [Full Text] [Related]
12. Correlation analyses on binding affinity of substituted benzenesulfonamides with carbonic anhydrase using ab initio MO calculations on their complex structures. Yoshida T, Munei Y, Hitaoka S, Chuman H. J Chem Inf Model; 2010 May 24; 50(5):850-60. PubMed ID: 20415451 [Abstract] [Full Text] [Related]
13. Affinity of sulfamates and sulfamides to carbonic anhydrase II isoform: experimental and molecular modeling approaches. Gavernet L, Gonzalez Funes JL, Blanch LB, Estiu G, Maresca A, Supuran CT. J Chem Inf Model; 2010 Jun 28; 50(6):1113-22. PubMed ID: 20481572 [Abstract] [Full Text] [Related]
14. Van der Waals interactions dominate ligand-protein association in a protein binding site occluded from solvent water. Barratt E, Bingham RJ, Warner DJ, Laughton CA, Phillips SE, Homans SW. J Am Chem Soc; 2005 Aug 24; 127(33):11827-34. PubMed ID: 16104761 [Abstract] [Full Text] [Related]
15. A versatile polypeptide platform for integrated recognition and reporting: affinity arrays for protein-ligand interaction analysis. Enander K, Dolphin GT, Liedberg B, Lundström I, Baltzer L. Chemistry; 2004 May 17; 10(10):2375-85. PubMed ID: 15146511 [Abstract] [Full Text] [Related]
16. Pairwise decomposition of residue interaction energies using semiempirical quantum mechanical methods in studies of protein-ligand interaction. Raha K, van der Vaart AJ, Riley KE, Peters MB, Westerhoff LM, Kim H, Merz KM. J Am Chem Soc; 2005 May 11; 127(18):6583-94. PubMed ID: 15869279 [Abstract] [Full Text] [Related]
17. Temperature dependence of the backbone dynamics of ribonuclease A in the ground state and bound to the inhibitor 5'-phosphothymidine (3'-5')pyrophosphate adenosine 3'-phosphate. Kovrigin EL, Cole R, Loria JP. Biochemistry; 2003 May 13; 42(18):5279-91. PubMed ID: 12731869 [Abstract] [Full Text] [Related]
18. Thermodynamic and structural effects of conformational constraints in protein-ligand interactions. Entropic paradoxy associated with ligand preorganization. DeLorbe JE, Clements JH, Teresk MG, Benfield AP, Plake HR, Millspaugh LE, Martin SF. J Am Chem Soc; 2009 Nov 25; 131(46):16758-70. PubMed ID: 19886660 [Abstract] [Full Text] [Related]
19. The paradoxical thermodynamic basis for the interaction of ethylene glycol, glycine, and sarcosine chains with bovine carbonic anhydrase II: an unexpected manifestation of enthalpy/entropy compensation. Krishnamurthy VM, Bohall BR, Semetey V, Whitesides GM. J Am Chem Soc; 2006 May 03; 128(17):5802-12. PubMed ID: 16637649 [Abstract] [Full Text] [Related]
20. Structure of bovine carbonic anhydrase II at 1.95 A resolution. Saito R, Sato T, Ikai A, Tanaka N. Acta Crystallogr D Biol Crystallogr; 2004 Apr 03; 60(Pt 4):792-5. PubMed ID: 15039588 [Abstract] [Full Text] [Related] Page: [Next] [New Search]