These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 18722059

  • 1. Studying effect of cell wall's carboxyl-carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution.
    Rakhshaee R, Giahi M, Pourahmad A.
    J Hazard Mater; 2009 Apr 15; 163(1):165-73. PubMed ID: 18722059
    [Abstract] [Full Text] [Related]

  • 2. Kinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass.
    Iftikhar AR, Bhatti HN, Hanif MA, Nadeem R.
    J Hazard Mater; 2009 Jan 30; 161(2-3):941-7. PubMed ID: 18508197
    [Abstract] [Full Text] [Related]

  • 3. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO, Baek MH, Kim DS.
    J Hazard Mater; 2009 Jul 15; 166(1):538-46. PubMed ID: 19131158
    [Abstract] [Full Text] [Related]

  • 4. Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides.
    Rakhshaee R, Khosravi M, Ganji MT.
    J Hazard Mater; 2006 Jun 30; 134(1-3):120-9. PubMed ID: 16325335
    [Abstract] [Full Text] [Related]

  • 5. Heavy metals binding properties of esterified lemon.
    Arslanoglu H, Altundogan HS, Tumen F.
    J Hazard Mater; 2009 May 30; 164(2-3):1406-13. PubMed ID: 18980807
    [Abstract] [Full Text] [Related]

  • 6. Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: kinetic and equilibrium studies.
    Tuzen M, Sari A, Mendil D, Soylak M.
    J Hazard Mater; 2009 Sep 30; 169(1-3):263-70. PubMed ID: 19380200
    [Abstract] [Full Text] [Related]

  • 7. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina).
    Miretzky P, Saralegui A, Cirelli AF.
    Chemosphere; 2004 Nov 30; 57(8):997-1005. PubMed ID: 15488590
    [Abstract] [Full Text] [Related]

  • 8. Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution.
    Shi T, Jia S, Chen Y, Wen Y, Du C, Guo H, Wang Z.
    J Hazard Mater; 2009 Sep 30; 169(1-3):838-46. PubMed ID: 19427115
    [Abstract] [Full Text] [Related]

  • 9. Removal of Pb2+, Ag+, Cs+ and Sr2+ from aqueous solution by brewery's waste biomass.
    Chen C, Wang J.
    J Hazard Mater; 2008 Feb 28; 151(1):65-70. PubMed ID: 17604909
    [Abstract] [Full Text] [Related]

  • 10. Nonlinear modelisation of heavy metal removal from aqueous solution using Ulva lactuca algae.
    Zakhama S, Dhaouadi H, M'Henni F.
    Bioresour Technol; 2011 Jan 28; 102(2):786-96. PubMed ID: 20855200
    [Abstract] [Full Text] [Related]

  • 11. Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): kinetics and equilibrium studies.
    Bayramoğlu G, Yakup Arica M.
    Bioresour Technol; 2009 Jan 28; 100(1):186-93. PubMed ID: 18632265
    [Abstract] [Full Text] [Related]

  • 12. Heavy metal removal from aqueous solutions by activated phosphate rock.
    Elouear Z, Bouzid J, Boujelben N, Feki M, Jamoussi F, Montiel A.
    J Hazard Mater; 2008 Aug 15; 156(1-3):412-20. PubMed ID: 18242833
    [Abstract] [Full Text] [Related]

  • 13. Toxicity assessment of heavy metal mixtures by Lemna minor L.
    Horvat T, Vidaković-Cifrek Z, Orescanin V, Tkalec M, Pevalek-Kozlina B.
    Sci Total Environ; 2007 Oct 01; 384(1-3):229-38. PubMed ID: 17610935
    [Abstract] [Full Text] [Related]

  • 14. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba.
    Megateli S, Semsari S, Couderchet M.
    Ecotoxicol Environ Saf; 2009 Sep 01; 72(6):1774-80. PubMed ID: 19505721
    [Abstract] [Full Text] [Related]

  • 15. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin.
    Dizge N, Keskinler B, Barlas H.
    J Hazard Mater; 2009 Aug 15; 167(1-3):915-26. PubMed ID: 19231079
    [Abstract] [Full Text] [Related]

  • 16. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.
    Mikes J, Siglova M, Cejkova A, Masak J, Jirku V.
    Water Sci Technol; 2005 Aug 15; 52(10-11):151-6. PubMed ID: 16459787
    [Abstract] [Full Text] [Related]

  • 17. Sorption potential of impregnated charcoal for removal of heavy metals from phosphoric acid.
    El-Sofany EA, Zaher WF, Aly HF.
    J Hazard Mater; 2009 Jun 15; 165(1-3):623-9. PubMed ID: 19038497
    [Abstract] [Full Text] [Related]

  • 18. Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor (floating aquatic macrophytes).
    Demirezen Yilmaz D, Akbulut H.
    Int J Phytoremediation; 2011 Jun 15; 13(10):970-84. PubMed ID: 21972565
    [Abstract] [Full Text] [Related]

  • 19. Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants.
    Ahn CK, Park D, Woo SH, Park JM.
    J Hazard Mater; 2009 May 30; 164(2-3):1130-6. PubMed ID: 19022570
    [Abstract] [Full Text] [Related]

  • 20. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust.
    Rafatullah M, Sulaiman O, Hashim R, Ahmad A.
    J Hazard Mater; 2009 Oct 30; 170(2-3):969-77. PubMed ID: 19520510
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.