These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
131 related items for PubMed ID: 18723107
1. Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Akinterinwa O, Cirino PC. Metab Eng; 2009 Jan; 11(1):48-55. PubMed ID: 18723107 [Abstract] [Full Text] [Related]
3. Specific expression patterns of xyl1, xyl2 and xyl3 in response to different sugars in Pichia stipitis. Han JH, Park JY, Kang HW, Choi GW, Chung BW, Min J. J Microbiol Biotechnol; 2010 May; 20(5):946-9. PubMed ID: 20519920 [Abstract] [Full Text] [Related]
4. Xylitol production by a Pichia stipitis D-xylulokinase mutant. Jin YS, Cruz J, Jeffries TW. Appl Microbiol Biotechnol; 2005 Jul; 68(1):42-5. PubMed ID: 15635458 [Abstract] [Full Text] [Related]
6. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A, Sawayama S. Enzyme Microb Technol; 2011 May 06; 48(6-7):466-71. PubMed ID: 22113018 [Abstract] [Full Text] [Related]
11. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. Rodrigues RC, Kenealy WR, Jeffries TW. J Ind Microbiol Biotechnol; 2011 Oct 06; 38(10):1649-55. PubMed ID: 21424687 [Abstract] [Full Text] [Related]
13. Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Parachin NS, Bergdahl B, van Niel EW, Gorwa-Grauslund MF. Metab Eng; 2011 Sep 06; 13(5):508-17. PubMed ID: 21642010 [Abstract] [Full Text] [Related]
18. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A. J Biotechnol; 2012 Apr 30; 158(4):203-10. PubMed ID: 21741417 [Abstract] [Full Text] [Related]
19. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Hasunuma T, Sung KM, Sanda T, Yoshimura K, Matsuda F, Kondo A. Appl Microbiol Biotechnol; 2011 May 30; 90(3):997-1004. PubMed ID: 21246355 [Abstract] [Full Text] [Related]