These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
102 related items for PubMed ID: 1872868
1. The rate of phosphate transport during recovery from muscular exercise depends on cytosolic [H+]. A 31P-MR spectroscopy study in humans. Iotti S, Funicello R, Zaniol P, Barbiroli B. Biochem Biophys Res Commun; 1991 Aug 15; 178(3):871-7. PubMed ID: 1872868 [Abstract] [Full Text] [Related]
2. Kinetics of post-exercise phosphate transport in human skeletal muscle: an in vivo 31P-MR spectroscopy study. Iotti S, Funicello R, Zaniol P, Barbiroli B. Biochem Biophys Res Commun; 1991 May 15; 176(3):1204-9. PubMed ID: 2039505 [Abstract] [Full Text] [Related]
3. Pi trapping in glycogenolytic pathway can explain transient Pi disappearance during recovery from muscular exercise. A 31P NMR study in the human. Bendahan D, Confort-Gouny S, Kozak-Reiss G, Cozzone PJ. FEBS Lett; 1990 Sep 03; 269(2):402-5. PubMed ID: 2401366 [Abstract] [Full Text] [Related]
4. In vivo assessment of mitochondrial functionality in human gastrocnemius muscle by 31P MRS. The role of pH in the evaluation of phosphocreatine and inorganic phosphate recoveries from exercise. Iotti S, Lodi R, Frassineti C, Zaniol P, Barbiroli B. NMR Biomed; 1993 Sep 03; 6(4):248-53. PubMed ID: 8217526 [Abstract] [Full Text] [Related]
5. Inorganic phosphate is transported into mitochondria in the absence of ATP biosynthesis: an in vivo 31P NMR study in the human skeletal muscle. Iotti S, Lodi R, Gottardi G, Zaniol P, Barbiroli B. Biochem Biophys Res Commun; 1996 Aug 05; 225(1):191-4. PubMed ID: 8769116 [Abstract] [Full Text] [Related]
6. Further impairment of muscle phosphate kinetics by lengthening exercise in DMD/BMD carriers. An in vivo 31P-NMR spectroscopy study. Barbiroli B, McCully KK, Iotti S, Lodi R, Zaniol P, Chance B. J Neurol Sci; 1993 Oct 05; 119(1):65-73. PubMed ID: 8246012 [Abstract] [Full Text] [Related]
7. Energy metabolism of the untrained muscle of elite runners as observed by 31P magnetic resonance spectroscopy: evidence suggesting a genetic endowment for endurance exercise. Park JH, Brown RL, Park CR, Cohn M, Chance B. Proc Natl Acad Sci U S A; 1988 Dec 05; 85(23):8780-4. PubMed ID: 3194388 [Abstract] [Full Text] [Related]
8. Simultaneous 31P MRS of the soleus and gastrocnemius in Sherpas during graded calf muscle exercise. Allen PS, Matheson GO, Zhu G, Gheorgiu D, Dunlop RS, Falconer T, Stanley C, Hochachka PW. Am J Physiol; 1997 Sep 05; 273(3 Pt 2):R999-1007. PubMed ID: 9321879 [Abstract] [Full Text] [Related]
9. Relationship of muscular fatigue to pH and diprotonated Pi in humans: a 31P-NMR study. Wilson JR, McCully KK, Mancini DM, Boden B, Chance B. J Appl Physiol (1985); 1988 Jun 05; 64(6):2333-9. PubMed ID: 3403417 [Abstract] [Full Text] [Related]
10. Functional pools of oxidative and glycolytic fibers in human muscle observed by 31P magnetic resonance spectroscopy during exercise. Park JH, Brown RL, Park CR, McCully K, Cohn M, Haselgrove J, Chance B. Proc Natl Acad Sci U S A; 1987 Dec 05; 84(24):8976-80. PubMed ID: 3480522 [Abstract] [Full Text] [Related]
11. Heterogeneity of metabolic response to muscular exercise in humans. New criteria of invariance defined by in vivo phosphorus-31 NMR spectroscopy. Bendahan D, Confort-Gouny S, Kozak-Reiss G, Cozzone PJ. FEBS Lett; 1990 Oct 15; 272(1-2):155-8. PubMed ID: 2226826 [Abstract] [Full Text] [Related]
12. Skeletal muscle bioenergetics during frequency-dependent fatigue. Bridges CR, Clark BJ, Hammond RL, Stephenson LW. Am J Physiol; 1991 Mar 15; 260(3 Pt 1):C643-51. PubMed ID: 2003585 [Abstract] [Full Text] [Related]
13. 31P nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue. Comparison of aerobic and anaerobic exercise. Miller RG, Boska MD, Moussavi RS, Carson PJ, Weiner MW. J Clin Invest; 1988 Apr 15; 81(4):1190-6. PubMed ID: 3350969 [Abstract] [Full Text] [Related]
14. Proton buffering in human skeletal muscle studied in vivo by phosphorus magnetic resonance spectroscopy. Kemp GJ, Taylor DJ, Dunn JF, Radda GK. Biochem Soc Trans; 1991 Apr 15; 19(2):207S. PubMed ID: 1889583 [No Abstract] [Full Text] [Related]
15. Muscle pain after exercise is linked with an inorganic phosphate increase as shown by 31P NMR. Aldridge R, Cady EB, Jones DA, Obletter G. Biosci Rep; 1986 Jul 15; 6(7):663-7. PubMed ID: 3779042 [Abstract] [Full Text] [Related]
16. Metabolic and nonmetabolic components of fatigue monitored with 31P-NMR. Baker AJ, Carson PJ, Miller RG, Weiner MW. Muscle Nerve; 1994 Sep 15; 17(9):1002-9. PubMed ID: 8065387 [Abstract] [Full Text] [Related]
17. In vivo 31P-NMR in human muscle: transient patterns with exercise. Molé PA, Coulson RL, Caton JR, Nichols BG, Barstow TJ. J Appl Physiol (1985); 1985 Jul 15; 59(1):101-4. PubMed ID: 4030551 [Abstract] [Full Text] [Related]
18. Exercise metabolism in Duchenne muscular dystrophy: a biochemical and [31P]-nuclear magnetic resonance study of mdx mice. Dunn JF, Tracey I, Radda GK. Proc Biol Sci; 1993 Mar 22; 251(1332):201-6. PubMed ID: 8097327 [Abstract] [Full Text] [Related]
19. Effects of active and passive recoveries on splitting of the inorganic phosphate peak determined by 31P-nuclear magnetic resonance spectroscopy. Yoshida T, Watari H, Tagawa K. NMR Biomed; 1996 Feb 22; 9(1):13-9. PubMed ID: 8842028 [Abstract] [Full Text] [Related]
20. Constant relationships between force, phosphate concentration, and pH in muscles with differential fatigability. Weiner MW, Moussavi RS, Baker AJ, Boska MD, Miller RG. Neurology; 1990 Dec 22; 40(12):1888-93. PubMed ID: 2247239 [Abstract] [Full Text] [Related] Page: [Next] [New Search]