These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


68 related items for PubMed ID: 1874814

  • 1. Ischemia-reperfusion does not affect reactivity of isolated canine basilar artery.
    Katusić ZS, Michenfelder JD, Milde JH.
    J Cereb Blood Flow Metab; 1991 Sep; 11(5):824-8. PubMed ID: 1874814
    [Abstract] [Full Text] [Related]

  • 2. Recovery of endothelium-dependent relaxations four weeks after ischemia and progressive reperfusion in canine coronary arteries.
    Lee JJ, Olmos L, Vanhoutte PM.
    Proc Assoc Am Physicians; 1996 Sep; 108(5):362-7. PubMed ID: 8902880
    [Abstract] [Full Text] [Related]

  • 3. Nitric oxide and effects of cationic polypeptides in canine cerebral arteries.
    Kinoshita H, Katusic ZS.
    J Cereb Blood Flow Metab; 1997 Apr; 17(4):470-80. PubMed ID: 9143230
    [Abstract] [Full Text] [Related]

  • 4. Oxytocin causes endothelium-dependent relaxations of canine basilar arteries by activating V1-vasopressinergic receptors.
    Katusic ZS, Shepherd JT, Vanhoutte PM.
    J Pharmacol Exp Ther; 1986 Jan; 236(1):166-70. PubMed ID: 3001282
    [Abstract] [Full Text] [Related]

  • 5. Effects of SIN-1 on isolated canine basilar arteries.
    Katusic ZS, Vanhoutte PM.
    J Cardiovasc Pharmacol; 1989 Jan; 14 Suppl 11():S72-5. PubMed ID: 2484704
    [Abstract] [Full Text] [Related]

  • 6. Global myocardial ischemia and reperfusion impair endothelium-dependent relaxations to aggregating platelets in the canine coronary artery. A possible cause of vasospasm after cardiopulmonary bypass.
    Pearson PJ, Lin PJ, Schaff HV.
    J Thorac Cardiovasc Surg; 1992 Jun; 103(6):1147-54. PubMed ID: 1597979
    [Abstract] [Full Text] [Related]

  • 7. Altered effects of vasopressin on the coronary circulation after ischemia.
    Sellke FW, Quillen JE.
    J Thorac Cardiovasc Surg; 1992 Aug; 104(2):357-63. PubMed ID: 1495297
    [Abstract] [Full Text] [Related]

  • 8. Effects of chronic diabetes on vascular responses of basilar artery and aorta from rabbits with alloxan-induced diabetes.
    Abiru T, Kamata K, Kasuya Y.
    Res Commun Chem Pathol Pharmacol; 1991 Oct; 74(1):71-87. PubMed ID: 1801104
    [Abstract] [Full Text] [Related]

  • 9. Decreased vasoconstrictor responses in remote cerebral arteries after focal brain ischemia and reperfusion in the rat, in vitro.
    Kovács A, Móricz K, Albert M, Benedek A, Hársing LG, Szénási G.
    Eur J Pharmacol; 2010 Oct 10; 644(1-3):154-9. PubMed ID: 20621085
    [Abstract] [Full Text] [Related]

  • 10. Halothane does not protect against vascular injury in isolated cerebral and mesenteric arteries.
    Ogawa K, Tokinaga Y, Iwahashi S, Mizumoto K, Hatano Y.
    Can J Anaesth; 2005 Oct 10; 52(8):870-7. PubMed ID: 16189341
    [Abstract] [Full Text] [Related]

  • 11. Subarachnoid hemorrhage and the role of potassium channels in relaxations of canine basilar artery to nitrovasodilators.
    Onoue H, Katusic ZS.
    J Cereb Blood Flow Metab; 1998 Feb 10; 18(2):186-95. PubMed ID: 9469162
    [Abstract] [Full Text] [Related]

  • 12. Vasopressin causes endothelium-dependent relaxations of the canine basilar artery.
    Katusic ZS, Shepherd JT, Vanhoutte PM.
    Circ Res; 1984 Nov 10; 55(5):575-9. PubMed ID: 6488482
    [Abstract] [Full Text] [Related]

  • 13. Nicotine exposure, mimicked smoking, directly and indirectly enhanced protein kinase C activity in isolated canine basilar artery, resulting in enhancement of arterial contraction.
    Koide M, Nishizawa S, Yamamoto S, Yamaguchi M, Namba H, Terakawa S.
    J Cereb Blood Flow Metab; 2005 Mar 10; 25(3):292-301. PubMed ID: 15647745
    [Abstract] [Full Text] [Related]

  • 14. Anoxic contractions in isolated canine cerebral arteries: contribution of endothelium-derived factors, metabolites of arachidonic acid, and calcium entry.
    Katusic ZS, Vanhoutte PM.
    J Cardiovasc Pharmacol; 1986 Mar 10; 8 Suppl 8():S97-101. PubMed ID: 2433536
    [Abstract] [Full Text] [Related]

  • 15. Reperfusion after acute coronary occlusion in dogs impairs endothelium-dependent relaxation to acetylcholine and augments contractile reactivity in vitro.
    VanBenthuysen KM, McMurtry IF, Horwitz LD.
    J Clin Invest; 1987 Jan 10; 79(1):265-74. PubMed ID: 3793926
    [Abstract] [Full Text] [Related]

  • 16. Endothelium-dependent contraction to stretch in canine basilar arteries.
    Katusic ZS, Shepherd JT, Vanhoutte PM.
    Am J Physiol; 1987 Mar 10; 252(3 Pt 2):H671-3. PubMed ID: 3103472
    [Abstract] [Full Text] [Related]

  • 17. Reactivity of human deferential artery to constrictor and dilator substances.
    Medina P, Chuan P, Noguera R, Vila JM, Aldasoro M, Lluch S.
    J Androl; 1996 Mar 10; 17(6):733-9. PubMed ID: 9016405
    [Abstract] [Full Text] [Related]

  • 18. Role of the L-arginine-nitric oxide pathway in the changes in cerebrovascular reactivity following hemorrhagic hypotension and retransfusion.
    Szabó C, Csáki C, Benyó Z, Reivich M, Kovách AG.
    Circ Shock; 1992 Aug 10; 37(4):307-16. PubMed ID: 1446389
    [Abstract] [Full Text] [Related]

  • 19. The vasoactive effect of serotonin on canine coronary arteries after ischemia and reperfusion.
    Sheridan FM.
    Coron Artery Dis; 1994 Jun 10; 5(6):481-6. PubMed ID: 7952406
    [Abstract] [Full Text] [Related]

  • 20. Protective effects of an indenoindole antioxidant on coronary endothelial function after long-term storage.
    Wiklund L, Miller VM, McGregor CG, Sjöquist PO, Berggren H, Nilsson F.
    Transplantation; 1995 Oct 27; 60(8):774-8. PubMed ID: 7482733
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.