These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


110 related items for PubMed ID: 18751907

  • 1. Modulation of protein function by isoketals and levuglandins.
    Davies SS.
    Subcell Biochem; 2008; 49():49-70. PubMed ID: 18751907
    [Abstract] [Full Text] [Related]

  • 2. Isoketals: highly reactive gamma-ketoaldehydes formed from the H2-isoprostane pathway.
    Davies SS, Amarnath V, Roberts LJ.
    Chem Phys Lipids; 2004 Mar; 128(1-2):85-99. PubMed ID: 15037155
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Effects of reactive gamma-ketoaldehydes formed by the isoprostane pathway (isoketals) and cyclooxygenase pathway (levuglandins) on proteasome function.
    Davies SS, Amarnath V, Montine KS, Bernoud-Hubac N, Boutaud O, Montine TJ, Roberts LJ.
    FASEB J; 2002 May; 16(7):715-7. PubMed ID: 11978738
    [Abstract] [Full Text] [Related]

  • 5. Histidine and lysine as targets of oxidative modification.
    Uchida K.
    Amino Acids; 2003 Dec; 25(3-4):249-57. PubMed ID: 14661088
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Potential role of isoketals formed via the isoprostane pathway of lipid peroxidation in ischemic arrhythmias.
    Boyden PA, Davies SS, Viswanathan PC, Amarnath V, Balser JR, Roberts LJ.
    J Cardiovasc Pharmacol; 2007 Nov; 50(5):480-6. PubMed ID: 18030056
    [Abstract] [Full Text] [Related]

  • 9. Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls.
    Aldini G, Dalle-Donne I, Facino RM, Milzani A, Carini M.
    Med Res Rev; 2007 Nov; 27(6):817-68. PubMed ID: 17044003
    [Abstract] [Full Text] [Related]

  • 10. Lipid peroxidation: physiological levels and dual biological effects.
    Niki E.
    Free Radic Biol Med; 2009 Sep 01; 47(5):469-84. PubMed ID: 19500666
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Propagation of protein glycation damage involves modification of tryptophan residues via reactive oxygen species: inhibition by pyridoxamine.
    Chetyrkin SV, Mathis ME, Ham AJ, Hachey DL, Hudson BG, Voziyan PA.
    Free Radic Biol Med; 2008 Apr 01; 44(7):1276-85. PubMed ID: 18374270
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Pyridoxamine: an extremely potent scavenger of 1,4-dicarbonyls.
    Amarnath V, Amarnath K, Amarnath K, Davies S, Roberts LJ.
    Chem Res Toxicol; 2004 Mar 01; 17(3):410-5. PubMed ID: 15025512
    [Abstract] [Full Text] [Related]

  • 18. Isolevuglandins (isoLGs) as toxic lipid peroxidation byproducts and their pathogenetic role in human diseases.
    Aschner M, Nguyen TT, Sinitskii AI, Santamaría A, Bornhorst J, Ajsuvakova OP, da Rocha JBT, Skalny AV, Tinkov AA.
    Free Radic Biol Med; 2021 Jan 01; 162():266-273. PubMed ID: 33099003
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Scavenging 4-Oxo-2-nonenal.
    Amarnath V, Amarnath K.
    Chem Res Toxicol; 2015 Oct 19; 28(10):1888-90. PubMed ID: 26355561
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.