These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


509 related items for PubMed ID: 18752405

  • 41. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex.
    Vossel S, Thiel CM, Fink GR.
    Neuroimage; 2006 Sep; 32(3):1257-64. PubMed ID: 16846742
    [Abstract] [Full Text] [Related]

  • 42. Common neural substrates for the control and effects of visual attention and perceptual bistability.
    Slotnick SD, Yantis S.
    Brain Res Cogn Brain Res; 2005 Jun; 24(1):97-108. PubMed ID: 15922162
    [Abstract] [Full Text] [Related]

  • 43. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control.
    Thiel CM, Fink GR.
    Neuroscience; 2008 Mar 18; 152(2):381-90. PubMed ID: 18272290
    [Abstract] [Full Text] [Related]

  • 44. Attentional control parameters following parietal-lobe damage: evidence from normal subjects.
    Vecera SP, Flevaris AV.
    Neuropsychologia; 2005 Mar 18; 43(8):1189-203. PubMed ID: 15817177
    [Abstract] [Full Text] [Related]

  • 45. Frontoparietal activation with preparation for antisaccades.
    Brown MR, Vilis T, Everling S.
    J Neurophysiol; 2007 Sep 18; 98(3):1751-62. PubMed ID: 17596416
    [Abstract] [Full Text] [Related]

  • 46. Greater frontal-parietal synchrony at low gamma-band frequencies for inefficient than efficient visual search in human EEG.
    Phillips S, Takeda Y.
    Int J Psychophysiol; 2009 Sep 18; 73(3):350-4. PubMed ID: 19481120
    [Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48. Spatial and effector processing in the human parietofrontal network for reaches and saccades.
    Beurze SM, de Lange FP, Toni I, Medendorp WP.
    J Neurophysiol; 2009 Jun 18; 101(6):3053-62. PubMed ID: 19321636
    [Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58. Differential frontal activation during exogenous and endogenous orientation of visuospatial attention. A near-infrared spectroscopy study.
    Takahashi M, Ikegami M.
    Neuropsychobiology; 2008 Jun 18; 58(2):55-64. PubMed ID: 18832860
    [Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60. Spatial attention influences trial-by-trial relationships between response time and functional connectivity in the visual cortex.
    Prado J, Weissman DH.
    Neuroimage; 2011 Jan 01; 54(1):465-73. PubMed ID: 20736069
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 26.