These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


172 related items for PubMed ID: 18754630

  • 1. Characterization of post-translational modifications of the linker histones H1 and H5 from chicken erythrocytes using mass spectrometry.
    Snijders AP, Pongdam S, Lambert SJ, Wood CM, Baldwin JP, Dickman MJ.
    J Proteome Res; 2008 Oct; 7(10):4326-35. PubMed ID: 18754630
    [Abstract] [Full Text] [Related]

  • 2. Identification of novel post-translational modifications in linker histones from chicken erythrocytes.
    Sarg B, Lopez R, Lindner H, Ponte I, Suau P, Roque A.
    J Proteomics; 2015 Jan 15; 113():162-77. PubMed ID: 25452131
    [Abstract] [Full Text] [Related]

  • 3. Characterization of phosphorylation sites on histone H1 isoforms by tandem mass spectrometry.
    Garcia BA, Busby SA, Barber CM, Shabanowitz J, Allis CD, Hunt DF.
    J Proteome Res; 2004 Jan 15; 3(6):1219-27. PubMed ID: 15595731
    [Abstract] [Full Text] [Related]

  • 4. Combined bottom-up and top-down mass spectrometry analyses of the pattern of post-translational modifications of Drosophila melanogaster linker histone H1.
    Bonet-Costa C, Vilaseca M, Diema C, Vujatovic O, Vaquero A, Omeñaca N, Castejón L, Bernués J, Giralt E, Azorín F.
    J Proteomics; 2012 Jul 16; 75(13):4124-38. PubMed ID: 22647927
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Post-translational modifications of linker histone H1 variants in mammals.
    Starkova TY, Polyanichko AM, Artamonova TO, Khodorkovskii MA, Kostyleva EI, Chikhirzhina EV, Tomilin AN.
    Phys Biol; 2017 Feb 16; 14(1):016005. PubMed ID: 28000612
    [Abstract] [Full Text] [Related]

  • 7. Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue.
    Wisniewski JR, Zougman A, Krüger S, Mann M.
    Mol Cell Proteomics; 2007 Jan 16; 6(1):72-87. PubMed ID: 17043054
    [Abstract] [Full Text] [Related]

  • 8. Linker histone subtype composition and affinity for chromatin in situ in nucleated mature erythrocytes.
    Koutzamani E, Loborg H, Sarg B, Lindner HH, Rundquist I.
    J Biol Chem; 2002 Nov 22; 277(47):44688-94. PubMed ID: 12223471
    [Abstract] [Full Text] [Related]

  • 9. Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36.
    Jung HR, Pasini D, Helin K, Jensen ON.
    Mol Cell Proteomics; 2010 May 22; 9(5):838-50. PubMed ID: 20150217
    [Abstract] [Full Text] [Related]

  • 10. The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics.
    Izzo A, Schneider R.
    Biochim Biophys Acta; 2016 Mar 22; 1859(3):486-95. PubMed ID: 26348411
    [Abstract] [Full Text] [Related]

  • 11. Comprehensive phosphoprotein analysis of linker histone H1 from Tetrahymena thermophila.
    Garcia BA, Joshi S, Thomas CE, Chitta RK, Diaz RL, Busby SA, Andrews PC, Ogorzalek Loo RR, Shabanowitz J, Kelleher NL, Mizzen CA, Allis CD, Hunt DF.
    Mol Cell Proteomics; 2006 Sep 22; 5(9):1593-609. PubMed ID: 16835217
    [Abstract] [Full Text] [Related]

  • 12. Linker histone-like proteins in Muscovy duck (Cairina moschata L) erythrocyte chromatin.
    Kowalski A, Pałyga J, Górnicka-Michalska E.
    Cell Biol Int; 2009 Mar 22; 33(3):344-51. PubMed ID: 19385032
    [Abstract] [Full Text] [Related]

  • 13. Interactome of Site-Specifically Acetylated Linker Histone H1.
    Höllmüller E, Greiner K, Kienle SM, Scheffner M, Marx A, Stengel F.
    J Proteome Res; 2021 Sep 03; 20(9):4443-4451. PubMed ID: 34351766
    [Abstract] [Full Text] [Related]

  • 14. A mass spectrometric "Western blot" to evaluate the correlations between histone methylation and histone acetylation.
    Zhang K, Siino JS, Jones PR, Yau PM, Bradbury EM.
    Proteomics; 2004 Dec 03; 4(12):3765-75. PubMed ID: 15378694
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Unambiguous determination of isobaric histone modifications by reversed-phase retention time and high-mass accuracy.
    Yang L, Tu S, Ren C, Bulloch EM, Liao CL, Tsai MD, Freitas MA.
    Anal Biochem; 2010 Jan 01; 396(1):13-22. PubMed ID: 19699711
    [Abstract] [Full Text] [Related]

  • 18. Revealing histone variant induced changes via quantitative proteomics.
    Arnaudo AM, Molden RC, Garcia BA.
    Crit Rev Biochem Mol Biol; 2011 Aug 01; 46(4):284-94. PubMed ID: 21526979
    [Abstract] [Full Text] [Related]

  • 19. Histone accessibility determined by lysine-specific acetylation in chicken erythrocyte nuclei.
    Lewis PN, Guillemette JG, Chan S.
    Eur J Biochem; 1988 Feb 15; 172(1):135-45. PubMed ID: 3126068
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.