These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 18756100
1. Modulation of hydrolysis and transglycosylation activity of Thermus maltogenic amylase by combinatorial saturation mutagenesis. Oh SW, Jang MU, Jeong CK, Kang HJ, Park JM, Kim TJ. J Microbiol Biotechnol; 2008 Aug; 18(8):1401-7. PubMed ID: 18756100 [Abstract] [Full Text] [Related]
5. Role of the glutamate 332 residue in the transglycosylation activity of ThermusMaltogenic amylase. Kim TJ, Park CS, Cho HY, Cha SS, Kim JS, Lee SB, Moon TW, Kim JW, Oh BH, Park KH. Biochemistry; 2000 Jun 13; 39(23):6773-80. PubMed ID: 10841756 [Abstract] [Full Text] [Related]
6. Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. Cha HJ, Yoon HG, Kim YW, Lee HS, Kim JW, Kweon KS, Oh BH, Park KH. Eur J Biochem; 1998 Apr 01; 253(1):251-62. PubMed ID: 9578484 [Abstract] [Full Text] [Related]
8. Modulation of the multisubstrate specificity of Thermus maltogenic amylase by truncation of the N-terminal domain and by a salt-induced shift of the monomer/dimer equilibrium. Kim TJ, Nguyen VD, Lee HS, Kim MJ, Cho HY, Kim YW, Moon TW, Park CS, Kim JW, Oh BH, Lee SB, Svensson B, Park KH. Biochemistry; 2001 Nov 27; 40(47):14182-90. PubMed ID: 11714271 [Abstract] [Full Text] [Related]
10. Functional expression and enzymatic characterization of Lactobacillus plantarum cyclomaltodextrinase catalyzing novel acarbose hydrolysis. Jang MU, Kang HJ, Jeong CK, Kang Y, Park JE, Kim TJ. J Microbiol; 2018 Feb 27; 56(2):113-118. PubMed ID: 29392561 [Abstract] [Full Text] [Related]
12. Enzymatic characterization of a maltogenic amylase from Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli. Oh KW, Kim MJ, Kim HY, Kim BY, Baik MY, Auh JH, Park CS. FEMS Microbiol Lett; 2005 Nov 01; 252(1):175-81. PubMed ID: 16198511 [Abstract] [Full Text] [Related]
14. Role of Val289 residue in the alpha-amylase of Bacillus amyloliquefaciens MTCC 610: an analysis by site directed mutagenesis. Priyadharshini R, Hemalatha D, Gunasekaran P. J Microbiol Biotechnol; 2010 Mar 01; 20(3):563-8. PubMed ID: 20372028 [Abstract] [Full Text] [Related]
15. Identification of acceptor substrate binding subsites +2 and +3 in the amylomaltase from Thermus thermophilus HB8. Kaper T, Leemhuis H, Uitdehaag JC, van der Veen BA, Dijkstra BW, van der Maarel MJ, Dijkhuizen L. Biochemistry; 2007 May 01; 46(17):5261-9. PubMed ID: 17407266 [Abstract] [Full Text] [Related]
16. Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Kim YW, Choi JH, Kim JW, Park C, Kim JW, Cha H, Lee SB, Oh BH, Moon TW, Park KH. Appl Environ Microbiol; 2003 Aug 01; 69(8):4866-74. PubMed ID: 12902281 [Abstract] [Full Text] [Related]
17. Role of active-site residues of dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis. Manuel SG, Ragunath C, Sait HB, Izano EA, Kaplan JB, Ramasubbu N. FEBS J; 2007 Nov 01; 274(22):5987-99. PubMed ID: 17949435 [Abstract] [Full Text] [Related]
18. L-glutamate enhances the expression of Thermus maltogenic amylase in Escherichia coli. Jung HM, Park KH, Kim SY, Lee JK. Biotechnol Prog; 2004 Nov 01; 20(1):26-31. PubMed ID: 14763819 [Abstract] [Full Text] [Related]
19. Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric constraint and hydrophobicity in active center. Kuriki T, Kaneko H, Yanase M, Takata H, Shimada J, Handa S, Takada T, Umeyama H, Okada S. J Biol Chem; 1996 Jul 19; 271(29):17321-9. PubMed ID: 8663322 [Abstract] [Full Text] [Related]