These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


305 related items for PubMed ID: 18760595

  • 1. Utility of Eucalyptus tereticornis (Smith) bark and Desulfotomaculum nigrificans for the remediation of acid mine drainage.
    Chockalingam E, Subramanian S.
    Bioresour Technol; 2009 Jan; 100(2):615-21. PubMed ID: 18760595
    [Abstract] [Full Text] [Related]

  • 2. Studies on removal of metal ions and sulphate reduction using rice husk and Desulfotomaculum nigrificans with reference to remediation of acid mine drainage.
    Chockalingam E, Subramanian S.
    Chemosphere; 2006 Feb; 62(5):699-708. PubMed ID: 16002121
    [Abstract] [Full Text] [Related]

  • 3. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination.
    Martins M, Faleiro ML, Barros RJ, Veríssimo AR, Barreiros MA, Costa MC.
    J Hazard Mater; 2009 Jul 30; 166(2-3):706-13. PubMed ID: 19135795
    [Abstract] [Full Text] [Related]

  • 4. Removal of chromium from industrial waste by using eucalyptus bark.
    Sarin V, Pant KK.
    Bioresour Technol; 2006 Jan 30; 97(1):15-20. PubMed ID: 16154498
    [Abstract] [Full Text] [Related]

  • 5. Bioremediation of zinc using Desulfotomaculum nigrificans: bioprecipitation and characterization studies.
    Radhika V, Subramanian S, Natarajan KA.
    Water Res; 2006 Nov 30; 40(19):3628-36. PubMed ID: 16904158
    [Abstract] [Full Text] [Related]

  • 6. Removal of metal ions by modified Pinus radiata bark and tannins from water solutions.
    Palma G, Freer J, Baeza J.
    Water Res; 2003 Dec 30; 37(20):4974-80. PubMed ID: 14604644
    [Abstract] [Full Text] [Related]

  • 7. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: effect of pH.
    Jiménez-Rodríguez AM, Durán-Barrantes MM, Borja R, Sánchez E, Colmenarejo MF, Raposo F.
    J Hazard Mater; 2009 Jun 15; 165(1-3):759-65. PubMed ID: 19056169
    [Abstract] [Full Text] [Related]

  • 8. Thermodynamic and breakthrough column studies for the selective sorption of chromium from industrial effluent on activated eucalyptus bark.
    Sarin V, Singh TS, Pant KK.
    Bioresour Technol; 2006 Nov 15; 97(16):1986-93. PubMed ID: 16311033
    [Abstract] [Full Text] [Related]

  • 9. Scavenging of Ni(II) metal ions by adsorption on PAC and babhul bark.
    Patil SJ, Bhole AG, Natarajan GS.
    J Environ Sci Eng; 2006 Jul 15; 48(3):203-8. PubMed ID: 17915785
    [Abstract] [Full Text] [Related]

  • 10. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization.
    Neculita CM, Zagury GJ.
    J Hazard Mater; 2008 Sep 15; 157(2-3):358-66. PubMed ID: 18281152
    [Abstract] [Full Text] [Related]

  • 11. Rice husk filtrate as a nutrient medium for the growth of Desulfotomaculum nigrificans: characterisation and sulfate reduction studies.
    Chockalingam E, Sivapriya K, Subramanian S, Chandrasekaran S.
    Bioresour Technol; 2005 Nov 15; 96(17):1880-8. PubMed ID: 16084367
    [Abstract] [Full Text] [Related]

  • 12. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.
    Gibert O, de Pablo J, Cortina JL, Ayora C.
    Water Res; 2005 Aug 15; 39(13):2827-38. PubMed ID: 15992854
    [Abstract] [Full Text] [Related]

  • 13. The removal of heavy metals in urban runoff by sorption on mulch.
    Jang A, Seo Y, Bishop PL.
    Environ Pollut; 2005 Jan 15; 133(1):117-27. PubMed ID: 15327862
    [Abstract] [Full Text] [Related]

  • 14. Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK.
    Jarvis AP, Moustafa M, Orme PH, Younger PL.
    Environ Pollut; 2006 Sep 15; 143(2):261-8. PubMed ID: 16443312
    [Abstract] [Full Text] [Related]

  • 15. Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria.
    Teclu D, Tivchev G, Laing M, Wallis M.
    Water Res; 2008 Dec 15; 42(19):4885-93. PubMed ID: 18929386
    [Abstract] [Full Text] [Related]

  • 16. Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge.
    Shukla OP, Juwarkar AA, Singh SK, Khan S, Rai UN.
    Waste Manag; 2011 Jan 15; 31(1):115-23. PubMed ID: 20889325
    [Abstract] [Full Text] [Related]

  • 17. Removal of mercury(II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies.
    Ghodbane I, Hamdaoui O.
    J Hazard Mater; 2008 Dec 30; 160(2-3):301-9. PubMed ID: 18400378
    [Abstract] [Full Text] [Related]

  • 18. Laboratory scale bioremediation of acid mine water drainage from a disused tin mine.
    Darkwah L, Rowson NA, Hewitt CJ.
    Biotechnol Lett; 2005 Sep 30; 27(17):1251-7. PubMed ID: 16215821
    [Abstract] [Full Text] [Related]

  • 19. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment.
    Zagury GJ, Kulnieks VI, Neculita CM.
    Chemosphere; 2006 Aug 30; 64(6):944-54. PubMed ID: 16487566
    [Abstract] [Full Text] [Related]

  • 20. Biosorption of nickel from aqueous solutions by Acacia leucocephala bark: Kinetics and equilibrium studies.
    Subbaiah MV, Vijaya Y, Kumar NS, Reddy AS, Krishnaiah A.
    Colloids Surf B Biointerfaces; 2009 Nov 01; 74(1):260-5. PubMed ID: 19716275
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.