These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


574 related items for PubMed ID: 18761709

  • 1. Expression and possible role of creatine transporter in the brain and at the blood-cerebrospinal fluid barrier as a transporting protein of guanidinoacetate, an endogenous convulsant.
    Tachikawa M, Fujinawa J, Takahashi M, Kasai Y, Fukaya M, Sakai K, Yamazaki M, Tomi M, Watanabe M, Sakimura K, Terasaki T, Hosoya K.
    J Neurochem; 2008 Nov; 107(3):768-78. PubMed ID: 18761709
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The blood-cerebrospinal fluid barrier is a major pathway of cerebral creatinine clearance: involvement of transporter-mediated process.
    Tachikawa M, Kasai Y, Takahashi M, Fujinawa J, Kitaichi K, Terasaki T, Hosoya K.
    J Neurochem; 2008 Oct; 107(2):432-42. PubMed ID: 18752646
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Processing mechanism of guanidinoacetate in choroid plexus epithelial cells: conversion of guanidinoacetate to creatine via guanidinoacetate N-methyltransferase and monocarboxylate transporter 12-mediated creatine release into the CSF.
    Jomura R, Akanuma SI, Kubo Y, Tachikawa M, Hosoya KI.
    Fluids Barriers CNS; 2022 Jun 03; 19(1):42. PubMed ID: 35658878
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Transport systems of serine at the brain barriers and in brain parenchymal cells.
    Kasai Y, Tachikawa M, Hirose S, Akanuma S, Hosoya K.
    J Neurochem; 2011 Jul 03; 118(2):304-13. PubMed ID: 21592122
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Usefulness and limitation of primary cultured porcine choroid plexus epithelial cells as an in vitro model to study drug transport at the blood-CSF barrier.
    Angelow S, Zeni P, Galla HJ.
    Adv Drug Deliv Rev; 2004 Oct 14; 56(12):1859-73. PubMed ID: 15381337
    [Abstract] [Full Text] [Related]

  • 13. Localization of organic anion transporting polypeptide 3 (oatp3) in mouse brain parenchymal and capillary endothelial cells.
    Ohtsuki S, Takizawa T, Takanaga H, Hori S, Hosoya K, Terasaki T.
    J Neurochem; 2004 Aug 14; 90(3):743-9. PubMed ID: 15255953
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Saturable disposition of taurine in the rat cerebrospinal fluid.
    Chung SJ, Ramanathan VK, Brett CM, Giacomini KM.
    J Pharmacol Exp Ther; 1996 Feb 14; 276(2):676-82. PubMed ID: 8632336
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The distribution of the HIV protease inhibitor, ritonavir, to the brain, cerebrospinal fluid, and choroid plexuses of the guinea pig.
    Anthonypillai C, Sanderson RN, Gibbs JE, Thomas SA.
    J Pharmacol Exp Ther; 2004 Mar 14; 308(3):912-20. PubMed ID: 14634041
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.