These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


295 related items for PubMed ID: 18767058

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. [Rotating three-dimensional dynamic culture of osteoblasts seeded on segmental scaffolds with controlled internal channel architectures for construction of segmental tissue engineered bone in vitro].
    Wang L, Wang Z, Li X, Li DC, Xu SF, Lu BH.
    Zhonghua Yi Xue Za Zhi; 2007 Jan 16; 87(3):200-3. PubMed ID: 17425853
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor.
    Li D, Tang T, Lu J, Dai K.
    Tissue Eng Part A; 2009 Oct 16; 15(10):2773-83. PubMed ID: 19226211
    [Abstract] [Full Text] [Related]

  • 8. Scaffold mesh size affects the osteoblastic differentiation of seeded marrow stromal cells cultured in a flow perfusion bioreactor.
    Holtorf HL, Datta N, Jansen JA, Mikos AG.
    J Biomed Mater Res A; 2005 Aug 01; 74(2):171-80. PubMed ID: 15965910
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds.
    Gomes ME, Sikavitsas VI, Behravesh E, Reis RL, Mikos AG.
    J Biomed Mater Res A; 2003 Oct 01; 67(1):87-95. PubMed ID: 14517865
    [Abstract] [Full Text] [Related]

  • 14. Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh.
    van den Dolder J, Bancroft GN, Sikavitsas VI, Spauwen PH, Jansen JA, Mikos AG.
    J Biomed Mater Res A; 2003 Feb 01; 64(2):235-41. PubMed ID: 12522809
    [Abstract] [Full Text] [Related]

  • 15. [Using perfusion bioreactor for mesenchymal stem cell proliferation in large tricalcium phosphate scaffold].
    Xie YZ, Zhu ZA, Tang TT, Dai KR, Lu JX, Pierre H.
    Zhonghua Yi Xue Za Zhi; 2006 Jun 20; 86(23):1633-7. PubMed ID: 16854305
    [Abstract] [Full Text] [Related]

  • 16. Optimization of culture conditions for osteogenically-induced mesenchymal stem cells in β-tricalcium phosphate ceramics with large interconnected channels.
    Bernhardt A, Lode A, Peters F, Gelinsky M.
    J Tissue Eng Regen Med; 2011 Jun 20; 5(6):444-53. PubMed ID: 20848550
    [Abstract] [Full Text] [Related]

  • 17. Mixing conditions for cell scaffolds affect the bone formation induced by bone engineering with human bone marrow stromal cells, beta-tricalcium phosphate granules, and rhBMP-2.
    Uchida M, Agata H, Sagara H, Shinohara Y, Kagami H, Asahina I.
    J Biomed Mater Res A; 2009 Oct 20; 91(1):84-91. PubMed ID: 18767063
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Combination of enzymes and flow perfusion conditions improves osteogenic differentiation of bone marrow stromal cells cultured upon starch/poly(epsilon-caprolactone) fiber meshes.
    Martins AM, Saraf A, Sousa RA, Alves CM, Mikos AG, Kasper FK, Reis RL.
    J Biomed Mater Res A; 2010 Sep 15; 94(4):1061-9. PubMed ID: 20694973
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.