These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 18771572
1. Ethylene insensitivity impedes a subset of responses to phosphorus deficiency in tomato and petunia. Kim HJ, Lynch JP, Brown KM. Plant Cell Environ; 2008 Dec; 31(12):1744-55. PubMed ID: 18771572 [Abstract] [Full Text] [Related]
2. Root formation in ethylene-insensitive plants. Clark DG, Gubrium EK, Barrett JE, Nell TA, Klee HJ. Plant Physiol; 1999 Sep; 121(1):53-60. PubMed ID: 10482660 [Abstract] [Full Text] [Related]
3. Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Negi S, Sukumar P, Liu X, Cohen JD, Muday GK. Plant J; 2010 Jan; 61(1):3-15. PubMed ID: 19793078 [Abstract] [Full Text] [Related]
4. The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Shibuya K, Barry KG, Ciardi JA, Loucas HM, Underwood BA, Nourizadeh S, Ecker JR, Klee HJ, Clark DG. Plant Physiol; 2004 Oct; 136(2):2900-12. PubMed ID: 15466231 [Abstract] [Full Text] [Related]
5. Physiological and metabolic bases of increased growth in the tomato ethylene-insensitive mutant Never ripe: extending ethylene signaling functions. Nascimento VL, Pereira AM, Pereira AS, Silva VF, Costa LC, Bastos CEA, Ribeiro DM, Caldana C, Sulpice R, Nunes-Nesi A, Zsögön A, Araújo WL. Plant Cell Rep; 2021 Aug; 40(8):1377-1393. PubMed ID: 33074436 [Abstract] [Full Text] [Related]
6. Expression of grape ACS1 in tomato decreases ethylene and alters the balance between auxin and ethylene during shoot and root formation. Ye X, Fu M, Liu Y, An D, Zheng X, Tan B, Li J, Cheng J, Wang W, Feng J. J Plant Physiol; 2018 Jul; 226():154-162. PubMed ID: 29778014 [Abstract] [Full Text] [Related]
7. Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants. Calvo-Polanco M, Ibort P, Molina S, Ruiz-Lozano JM, Zamarreño AM, García-Mina JM, Aroca R. Planta; 2017 Nov; 246(5):987-997. PubMed ID: 28735369 [Abstract] [Full Text] [Related]
8. Ethylene regulates phosphorus remobilization and expression of a phosphate transporter (PhPT1) during petunia corolla senescence. Chapin LJ, Jones ML. J Exp Bot; 2009 Nov; 60(7):2179-90. PubMed ID: 19380421 [Abstract] [Full Text] [Related]
9. Inhibition of tomato shoot growth by over-irrigation is linked to nitrogen deficiency and ethylene. Fiebig A, Dodd IC. Physiol Plant; 2016 Jan; 156(1):70-83. PubMed ID: 25950248 [Abstract] [Full Text] [Related]
10. A UV-light activated cinnamic acid isomer regulates plant growth and gravitropism via an ethylene receptor-independent pathway. Yang XX, Choi HW, Yang SF, Li N. Aust J Plant Physiol; 1999 Jan; 26(4):325-35. PubMed ID: 11542914 [Abstract] [Full Text] [Related]
11. The tomato Never-ripe locus regulates ethylene-inducible gene expression and is linked to a homolog of the Arabidopsis ETR1 gene. Yen HC, Lee S, Tanksley SD, Lanahan MB, Klee HJ, Giovannoni JJ. Plant Physiol; 1995 Apr; 107(4):1343-53. PubMed ID: 7770528 [Abstract] [Full Text] [Related]
12. Hormonal interplay during adventitious root formation in flooded tomato plants. Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P. Plant J; 2010 Aug; 63(4):551-62. PubMed ID: 20497380 [Abstract] [Full Text] [Related]
13. Salt stress-induced production of reactive oxygen- and nitrogen species and cell death in the ethylene receptor mutant Never ripe and wild type tomato roots. Poór P, Kovács J, Borbély P, Takács Z, Szepesi Á, Tari I. Plant Physiol Biochem; 2015 Dec; 97():313-22. PubMed ID: 26512971 [Abstract] [Full Text] [Related]
14. Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato. Barry CS, McQuinn RP, Thompson AJ, Seymour GB, Grierson D, Giovannoni JJ. Plant Physiol; 2005 May; 138(1):267-75. PubMed ID: 15834010 [Abstract] [Full Text] [Related]
15. Formation of transfer cells and H(+)-ATPase expression in tomato roots under P and Fe deficiency. Schikora A, Schmidt W. Planta; 2002 Jun; 215(2):304-11. PubMed ID: 12029480 [Abstract] [Full Text] [Related]
16. Ethylene and phosphorus availability have interacting yet distinct effects on root hair development. Zhang YJ, Lynch JP, Brown KM. J Exp Bot; 2003 Oct; 54(391):2351-61. PubMed ID: 12947049 [Abstract] [Full Text] [Related]
17. LeCTR2, a CTR1-like protein kinase from tomato, plays a role in ethylene signalling, development and defence. Lin Z, Alexander L, Hackett R, Grierson D. Plant J; 2008 Jun; 54(6):1083-93. PubMed ID: 18346193 [Abstract] [Full Text] [Related]
18. Jasmonates act positively in adventitious root formation in petunia cuttings. Lischweski S, Muchow A, Guthörl D, Hause B. BMC Plant Biol; 2015 Sep 22; 15():229. PubMed ID: 26394764 [Abstract] [Full Text] [Related]
19. Petunia as model for elucidating adventitious root formation and mycorrhizal symbiosis: at the nexus of physiology, genetics, microbiology and horticulture. Druege U, Franken P. Physiol Plant; 2019 Jan 22; 165(1):58-72. PubMed ID: 29774547 [Abstract] [Full Text] [Related]