These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
361 related items for PubMed ID: 18772288
1. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Guisbert E, Yura T, Rhodius VA, Gross CA. Microbiol Mol Biol Rev; 2008 Sep; 72(3):545-54. PubMed ID: 18772288 [Abstract] [Full Text] [Related]
3. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA. Genes Dev; 2006 Jul 01; 20(13):1776-89. PubMed ID: 16818608 [Abstract] [Full Text] [Related]
4. A chaperone network controls the heat shock response in E. coli. Guisbert E, Herman C, Lu CZ, Gross CA. Genes Dev; 2004 Nov 15; 18(22):2812-21. PubMed ID: 15545634 [Abstract] [Full Text] [Related]
5. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Rodriguez F, Arsène-Ploetze F, Rist W, Rüdiger S, Schneider-Mergener J, Mayer MP, Bukau B. Mol Cell; 2008 Nov 07; 32(3):347-58. PubMed ID: 18995833 [Abstract] [Full Text] [Related]
6. [Genetic regulation of the heat-shock response in Escherichia coli]. Ramírez Santos J, Solís Guzmán G, Gómez Eichelmann MC. Rev Latinoam Microbiol; 2001 Nov 07; 43(1):51-63. PubMed ID: 17061571 [Abstract] [Full Text] [Related]
7. BAH1 an E3 Ligase from Arabidopsis thaliana Stabilizes Heat Shock Factor σ32 of Escherichia coli by Interacting with DnaK/DnaJ Chaperone Team. Xu X, Liang K, Niu Y, Shen Y, Wan X, Li H, Yang Y. Curr Microbiol; 2018 Apr 07; 75(4):450-455. PubMed ID: 29260303 [Abstract] [Full Text] [Related]
8. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response. Zhang H, Yang J, Wu S, Gong W, Chen C, Perrett S. J Biol Chem; 2016 Mar 25; 291(13):6967-81. PubMed ID: 26823468 [Abstract] [Full Text] [Related]
9. Circuit architecture explains functional similarity of bacterial heat shock responses. Inoue M, Mitarai N, Trusina A. Phys Biol; 2012 Dec 25; 9(6):066003. PubMed ID: 23114274 [Abstract] [Full Text] [Related]
10. Role of the DnaK-ClpB bichaperone system in DNA gyrase reactivation during a severe heat-shock response in Escherichia coli. Lara-Ortíz T, Castro-Dorantes J, Ramírez-Santos J, Gómez-Eichelmann MC. Can J Microbiol; 2012 Feb 25; 58(2):195-9. PubMed ID: 22263929 [Abstract] [Full Text] [Related]
11. Quality control in the bacterial periplasm. Duguay AR, Silhavy TJ. Biochim Biophys Acta; 2004 Nov 11; 1694(1-3):121-34. PubMed ID: 15546662 [Abstract] [Full Text] [Related]
12. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells. Laubitz D, Jankowska A, Sikora A, Woliński J, Zabielski R, Grzesiuk E. Exp Physiol; 2006 Sep 11; 91(5):867-75. PubMed ID: 16728456 [Abstract] [Full Text] [Related]
13. Heat-shock response transcriptional program enables high-yield and high-quality recombinant protein production in Escherichia coli. Zhang X, Liu Y, Genereux JC, Nolan C, Singh M, Kelly JW. ACS Chem Biol; 2014 Sep 19; 9(9):1945-9. PubMed ID: 25051296 [Abstract] [Full Text] [Related]
14. Recognizability of heterologous co-chaperones with Streptococcus intermedius DnaK and Escherichia coli DnaK. Tomoyasu T, Tsuruno K, Tanatsugu R, Miyazaki A, Kondo H, Tabata A, Whiley RA, Sonomoto K, Nagamune H. Microbiol Immunol; 2018 Nov 19; 62(11):681-693. PubMed ID: 30239035 [Abstract] [Full Text] [Related]
15. Adaptation of Escherichi coli to elevated temperatures involves a change in stability of heat shock gene transcripts. Shenhar Y, Rasouly A, Biran D, Ron EZ. Environ Microbiol; 2009 Dec 19; 11(12):2989-97. PubMed ID: 19624711 [Abstract] [Full Text] [Related]
16. Regulation of the heat-shock response. Yura T, Nakahigashi K. Curr Opin Microbiol; 1999 Apr 19; 2(2):153-8. PubMed ID: 10322172 [Abstract] [Full Text] [Related]
17. Recent insights into the general stress response regulatory network in Escherichia coli. Hengge-Aronis R. J Mol Microbiol Biotechnol; 2002 May 19; 4(3):341-6. PubMed ID: 11931567 [Abstract] [Full Text] [Related]
18. Analysis of sigma32 mutants defective in chaperone-mediated feedback control reveals unexpected complexity of the heat shock response. Yura T, Guisbert E, Poritz M, Lu CZ, Campbell E, Gross CA. Proc Natl Acad Sci U S A; 2007 Nov 06; 104(45):17638-43. PubMed ID: 17968012 [Abstract] [Full Text] [Related]
19. Escherichia coli small heat shock protein IbpA plays a role in regulating the heat shock response by controlling the translation of σ32. Miwa T, Taguchi H. Proc Natl Acad Sci U S A; 2023 Aug 08; 120(32):e2304841120. PubMed ID: 37523569 [Abstract] [Full Text] [Related]
20. Escherichia coli small heat shock protein IbpA is an aggregation-sensor that self-regulates its own expression at posttranscriptional levels. Miwa T, Chadani Y, Taguchi H. Mol Microbiol; 2021 Jan 08; 115(1):142-156. PubMed ID: 32959419 [Abstract] [Full Text] [Related] Page: [Next] [New Search]